urban forest
Recently Published Documents


TOTAL DOCUMENTS

1563
(FIVE YEARS 581)

H-INDEX

50
(FIVE YEARS 9)

2023 ◽  
Vol 83 ◽  
Author(s):  
L. Ludwig ◽  
J. Y. Muraoka ◽  
C. Bonacorsi ◽  
F. C. Donofrio

Abstract Bats are important for the homeostasis of ecosystems and serve as hosts of various microorganisms including bacteria, viruses, and fungi with pathogenic potential. This study aimed to isolate fungi from biological samples obtained from bats captured in the city of Sinop (state of Mato Grosso, Brazil), where large areas of deforestation exist due to urbanization and agriculture. On the basis of the flow of people and domestic animals, 48 bats were captured in eleven urban forest fragments. The samples were processed and submitted to microbiological cultures, to isolate and to identify the fungal genera. Thirty-four (70.83%) of the captured bats were positive for fungi; 18 (37.5%) and 16 (33.33%) of these bats were female and male, respectively. Penicillium sp., Scopulariopsis sp., Fusarium sp., Aspergillus sp., Alternaria sp., Cryptococcus sp., Trichosporon sp., and Candida sp., which may cause opportunistic infections, were isolated. The bat species with the highest number of fungal isolates was Molossus molossus: 21 isolates (43.8%). According to our results, bats captured in urban forest fragments in Sinop harbor pathogenic fungi, increasing the risk of opportunistic fungal infections in humans and domestic animals.


2022 ◽  
Vol 218 ◽  
pp. 104311
Author(s):  
Caragh G. Threlfall ◽  
Lucy Dubrelle Gunn ◽  
Melanie Davern ◽  
Dave Kendal

Author(s):  
Hannah Adams ◽  
Liam McGuire

Many migratory bats require forested sites for roosting and foraging along their migration path, but increased urbanization and intensive agricultural practices may reduce the availability of stopover sites. Urban forests may provide important stopover habitat, maintaining landscape connectivity in regions where the majority of natural habitat has been cleared for development. Island biogeography theory can be applied to urbanized temperate forest biomes where small urban forests represent islands separated from the larger “mainland” forest. We used acoustic monitoring during the fall migration period to investigate the use of urban forest habitat by the migratory species Lasionycteris noctivagans Le Conte, 1831. We predicted that recorded activity would have a positive relationship with forest patch area and shape and a negative relationship with isolation from other forest patches, as suggested by island biogeography theory. We observed greater activity at larger forest patches, and although relationships for shape and isolation were not statistically supported the observed patterns were consistent with predictions. Our results demonstrate the need for more in-depth research on the habitat requirements for both migratory and resident bat species and the impact that ongoing urbanization has on local bat populations.


2022 ◽  
Vol 4 ◽  
Author(s):  
Taylor N. Turner ◽  
Thomas J. Dean ◽  
Jeff S. Kuehny

Native hardwood regeneration in the southeast United States is hindered by repeat disturbance events and the presence of invasive species. Our study aimed to determine the ability of native species in an unmanaged urban forest fragment to persist following high winds from hurricane Gustav in 2008 and subsequent salvage logging. In 2009, researchers estimated the density and composition of the regeneration and overstory trees as well as percent crown cover of invasive Chinese privet. Percent Chinese privet cover was visibly high, leading them to believe it may be inhibiting native hardwood establishment. Ten years later in 2019, we returned to the plots to take repeat measurements. Forest composition remains the same and privet crown cover remains high. There has been no increase in regenerating individuals, and overstory trees per hectare and basal area remains low. These results confirm that the heavy Chinese privet presence is persistent long term and will require management to promote reproduction of native overstory tree species.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12700
Author(s):  
Marzena Suchocka ◽  
Magdalena Wojnowska-Heciak ◽  
Magdalena Błaszczyk ◽  
Agnieszka Gawłowska ◽  
Joanna Ciemniewska ◽  
...  

Urban trees are important to maintain biodiversity and, therefore, need public acceptance. Few studies, however, have addressed the topic of social acceptability of old trees. The aim of this research was to examine city residents’ perception of old trees, including hollow-bearing ones, mainly in the aspect of safety and aesthetics. A total of 448 Warsaw municipal forest’ users expressed their opinions by completing an online questionnaire. Several methods were used to analyse the results of the study: the Chi-square test of independence, the Kruskal–Wallis H test, the Mann–Whitney U test and the Quartimax method of factor rotation analysis. The results revealed a correlation between the frequency of forest visits and the level of sensitivity toward old trees, which translates to less radical notion of danger and less radical decisions about cutting such trees down. Age of the respondents (56+) was a factor contributing to higher willingness to protect and care for old trees. The results also indicated that outdoor activity in the urban forest may increase ancient trees acceptance by developing emotional connection with them, and eventually contribute to their protection.


2022 ◽  
Author(s):  
Taotao Jin ◽  
Wei Liu ◽  
Yu Wang ◽  
Ming Zhao ◽  
Yao Fu ◽  
...  

Abstract Glomalin-related soil protein (GRSP) is a stable and persistent glycoprotein secreted by arbuscular mycorrhizal (AM) fungi that plays important roles in sequestering soil organic carbon (SOC) and soil quality improvement. Rapid urbanization has led to serious greenspace soil disturbances, resulting in soil degradation. However, few researches have examined the effects of urbanization on GRSP and its influencing factors. In this study, impervious surface area (ISA) was selected as an indicator of urbanization intensity. A total of 184 soil samples were collected from the 0-20 cm soil layer in the Nanchang greenspace, China (505 km2). The GRSP content, soil properties, urban forest characteristics, and land-use configuration were determined and investigated. The results showed that total GRSP (TG) and easily extractable GRSP (EEG) averages were 2.38 and 0.57 mg·g-1, respectively. TG and EEG decreased by 16.22 % and 19.68 %, respectively, from low to heavy urbanization areas. Linear regression analysis revealed a negative correlation between SOC and GRSP/SOC. SOC decreased from 39.9 to 1.4 mg·g-1, while EEG/SOC and TG/SOC increased by about 17 % and 34 %, respectively, indicating the important contribution of GRSP to the SOC pool. Pearson and redundancy analysis showed that GRSP was positively correlated with soil SOC, P, N, vegetation richness, and tree height but negatively correlated with pH, bulk density, and impervious area. The partial least squares path model (PLS-PM) further showed that urbanization affected soil properties, forest characteristics, and land use factors leading to GRSP changes. This study revealed the effects and key influencing factors of urbanization on GRSP. In the future, urban greenspace soil improvement can be considered from the new perspective of enhancing GRSP soil content.


2022 ◽  
Vol 3 ◽  
Author(s):  
Elvia J. Meléndez-Ackerman ◽  
Mervin E. Pérez ◽  
Ana B. Pou Espinal ◽  
Claudia Caballero ◽  
Leonardo Cortés ◽  
...  

Maintaining a diverse urban forest that provides ecosystem services can promote urban sustainability and resilience to environmental change. Around the world, cities have taken to inventorying their urban trees and quantifying their ecosystem services but more so in industrialized counties than in Latin America. Here we describe the results of an i-Tree inventory that established 206 survey plots in the National Municipal District of Santo Domingo (NMDSD). We used social-ecological theory to evaluate potential factors that may influence urban forest structure, composition, and ecosystem services diversity across three wards with distinct social and urban characteristics. Rarefaction curves showed a diverse urban forest dominated by non-native trees that have ornamental and medicinal uses. Wards differed in species composition with palms being particularly dominant in Wards 1 and 2 where the proportion of low-income houses is smaller. Ward 1 supports high-income residential areas and Ward 3 is the area with higher population and housing densities and lower income residents. On average, we found no significant differences among wards in tree species richness, average dbh, leaf area, and percent tree cover per plot. Trees in Ward 2 were taller, on average, than those in Ward 1 but were comparable to those in Ward 3. Likewise, tree density per plot was highest in Ward 2, followed by Ward 1 and Ward 3. Despite these significant differences in stem densities, average values in four ecosystem services involving measures of carbon, rainfall, and contaminants (C-sequestration, C-storage, avoided runoff, and removal of air pollutants) were non-significant across wards. We found disproportionately more street trees in Ward 1 relative to Wards 2 and 3 and more trees in public spaces in Wards 1 and 2 relative to Ward 3. Evidence for the luxury effect on tree distribution in the NMDSD was subtle and manifested mostly through differences in species composition and tree distribution across public and private domains as well as the amount of planting space. Overall results point to inequalities in the potential of reforestation among NMDS wards and an overabundance of non-native species, which should guide urban forest management with ecosystem services and conservation goals.


2022 ◽  
Vol 14 (2) ◽  
pp. 619
Author(s):  
Zhouli Liu ◽  
Mengdi Chen ◽  
Maosen Lin ◽  
Qinglin Chen ◽  
Qingxuan Lu ◽  
...  

The application of flowering plants is the basis of urban forest construction. A newly-found flowering hyperaccumulator is crucial for remediating urban contaminated soil sustainably by cadmium (Cd). This study evaluated growth responses, Cd uptake and bioaccumulation characteristics of seven urban flowering plants. Based on growth responses of these plants, Calendula officinalis L. showed high tolerance to at least 100 mg kg−1 Cd, in terms of significant increase in biomass and with no obvious changes in height. After 60 d exposure to 100 mg kg−1 Cd, the accumulated Cd in shoots of the plant reached 279.51 ± 13.67 μg g−1 DW, which is above the critical value defined for a hyperaccumulator (100 μg g−1 DW for Cd). Meanwhile, the plant could accumulate Cd to as much as 926.68 ± 29.11 μg g−1 DW in root and 1206.19 ± 23.06 μg g−1 DW in plant, and had higher Cd uptake and bioaccumulation values. According to these traits, it is shown that Calendula officinalis L. can become a potential Cd-hyperaccumulator for phytoremediation. By contrast, Dianthus caryophyllus L. is very sensitive to Cd stress in terms of significantly decreased biomass, height and Cd uptake, indicating the plant is considered as a Cd-bioindicator.


Sign in / Sign up

Export Citation Format

Share Document