scholarly journals Advances in Nanocarriers for Drug Delivery in Dental Therapies

2021 ◽  
Vol 03 (03) ◽  
pp. 1-1
Author(s):  
Bhaumik Patel ◽  
◽  
Yeshwanthi Kamineni ◽  
Shashank Gorityala ◽  
M Hima Bindu ◽  
...  

Dental caries are one of the major causes of oral degeneration diseases. In order to treat dental-related diseases, it is often challenging and expensive. Recent literature has reported many advances in designing delivery systems utilizing polymers and novel biomaterials. Polymers play an important role in designing many nanoformulations like liposomes, polymeric micelles, polymeric nanoparticles, carbon-based nanoparticles, nano-hydroxyapatite, iron oxide, zirconia, silica, and silver nanoparticles were used to treat oral complications of the oral cavity including dental caries, periodontal disease, and oral cancer. The present review focus on the importance of novel biodegradable polymers like poly (D, L-Lactide acid), PLLA (poly-L-lactide), PDLA (poly-D- lactide), PLGA that is poly (D, L Lactide-co-glycolide), cellulose acetate phthalate, and Chitosan, etc used to design site-specific delivery and controlled drug delivery to treat dental diseases. Moreover, research development in this area will raise opportunities for the dentist, researchers, and pharmaceutical scientists to fabricate an ideal drug delivery system.

Pharmaceutics ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 150 ◽  
Author(s):  
Elisabetta Mazzotta ◽  
Lorena Tavano ◽  
Rita Muzzalupo

Thermo-sensitive vesicles are a promising tool for triggering the release of drugs to solid tumours when used in combination with mild hyperthermia. Responsivity to temperature makes them intelligent nanodevices able to provide a site-specific chemotherapy. Following a brief introduction concerning hyperthermia and its advantageous combination with vesicular systems, recent investigations on thermo-sensitive vesicles useful for controlled drug delivery in cancer treatment are reported in this review. In particular, the influence of bilayer composition on the in vitro and in vivo behaviour of thermo-sensitive formulations currently under investigation have been extensively explored.


2019 ◽  
Vol 25 (11) ◽  
pp. 1312-1334 ◽  
Author(s):  
Patricia Severino ◽  
Classius F. da Silva ◽  
Luciana N. Andrade ◽  
Daniele de Lima Oliveira ◽  
Joana Campos ◽  
...  

Nanotechnology refers to the control, manipulation, study and manufacture of structures and devices at the nanometer size range. The small size, customized surface, improved solubility and multi-functionality of nanoparticles will continue to create new biomedical applications, as nanoparticles allow to dominate stability, solubility and bioavailability, as well controlled release of drugs. The type of a nanoparticle, and its related chemical, physical and morphological properties influence its interaction with living cells, as well as determine the route of clearance and possible toxic effects. This field requires cross-disciplinary research and gives opportunities to design and develop multifunctional devices, which allow the diagnosis and treatment of devastating diseases. Over the past few decades, biodegradable polymers have been studied for the fabrication of drug delivery systems. There was extensive development of biodegradable polymeric nanoparticles for drug delivery and tissue engineering, in view of their applications in controlling the release of drugs, stabilizing labile molecules from degradation and site-specific drug targeting. The primary aim is to reduce dosing frequency and prolong the therapeutic outcomes. For this purpose, inert excipients should be selected, being biopolymers, e.g. sodium alginate, commonly used in controlled drug delivery. Nanoparticles composed of alginate (known as anionic polysaccharide widely distributed in the cell walls of brown algae which, when in contact with water, forms a viscous gum) have emerged as one of the most extensively characterized biomaterials used for drug delivery and targeting a set of administration routes. Their advantages include not only the versatile physicochemical properties, which allow chemical modifications for site-specific targeting but also their biocompatibility and biodegradation profiles, as well as mucoadhesiveness. Furthermore, mechanical strength, gelation, and cell affinity can be modulated by combining alginate nanoparticles with other polymers, surface tailoring using specific targeting moieties and by chemical or physical cross-linking. However, for every physicochemical modification in the macromolecule/ nanoparticles, a new toxicological profile may be obtained. In this paper, the different aspects related to the use of alginate nanoparticles for drug delivery and targeting have been revised, as well as how their toxicological profile will determine the therapeutic outcome of the drug delivery system.


Polymer ◽  
2013 ◽  
Vol 54 (18) ◽  
pp. 4972-4979 ◽  
Author(s):  
Erfan Dashtimoghadam ◽  
Hamid Mirzadeh ◽  
Faramarz Afshar Taromi ◽  
Bo Nyström

2019 ◽  
Vol 16 (10) ◽  
pp. 887-901 ◽  
Author(s):  
Kanchan Kashyap ◽  
Rahul Shukla

: Blood-brain barrier (BBB) provides restrictions for the transportation of various therapeutic agents to the brain. Efforts to directly target the brain by olfactory as well as trigeminal nerve pathway, bypassing BBB, have grown significantly in recent times. The intranasal route of transportation of the drug encompasses ability for the delivery of drug directly to the brain, improves site-specificity in the brain and avoids systemic side effects. In the current era, novel drug delivery systems are useful tools for targeting the brain without providing any harmful effects in nasal mucosa as well as the central nervous system. The complex structure of nasal cavity, mucociliary clearance, degradation by the enzymes present in nasal cavity and pathological conditions like rhinitis, common cold, etc. are the major disputes for nasal drug delivery. The use of nanotechnological approaches like solid lipid nanoparticles, polymeric nanoparticles, nanoemulsions, liposomes and polymeric micelles provides the ability to overcome these barriers. There are several emerging nasal drug delivery technologies produced by various pharmaceutical companies to conquer these hurdles. This review tries to address the recent developments in the area of direct drug delivery to the brain through the nasal route.


2020 ◽  
Vol 15 ◽  
Author(s):  
Dipali R. Talele ◽  
Deepa H. Patel

Background: Oral cancer is the life threatening disease causing mortality. The majority of chemotherapeutic anticancer agents are toxic to healthy tissues, have poor bioavailability and affects the quality of life of the patients. Objective: The main challenge in the treatment of oral cancer is the effective and safe delivery of chemotherapeutic anticancer drugs. This present review deals with the recent advancement in the nanotechnologies and its probable applications in the oral cancer treatment. Methods: This review includes a gist of suitable literature. Results: Nanotechnology brings novel methodologies or modifications in current anticancer therapies to improve individual wellbeing and survival. Conclusion: Nanotechnology put forward the potential of increasing the efficacy of the therapy and targeted drug delivery, which in turn increase drug absorption and bioavailability at the site of tumour. Different nanocarriers include liposomes, polymeric nanoparticles, inorganic nanoparticles, combinational (polymeric- inorganic) nanoparticles, magnetic nanoparticles, nanolipids, hydrogels, dendrimers and polymeric micelles. This review confers development of new drug delivery approaches for effective therapeutic outcomes and abating the toxicity to healthy tissues.


2021 ◽  
Vol 17 (12) ◽  
pp. 2298-2318
Author(s):  
Bashir A. Sheikh ◽  
Basharat A. Bhat ◽  
Bader Alshehri ◽  
Rakeeb A. Mir ◽  
Wajahat R. Mir ◽  
...  

Tuberculosis (TB) is still one of the deadliest disease across the globe caused by Mycobacterium tuberculosis (Mtb). Mtb invades host macrophages and other immune cells, modifies their lysosome trafficking proteins, prevents phagolysosomes formation, and inhibits the TNF receptor-dependent apoptosis in macrophages and monocytes. Tuberculosis (TB) killed 1.4 million people worldwide in the year 2019. Despite the advancements in tuberculosis (TB) treatments, multidrugresistant tuberculosis (MDR-TB) remains a severe threat to human health. The complications are further compounded by the emergence of MDR/XDR strains and the failure of conventional drug regimens to eradicate the resistant bacterial strains. Thus, new therapeutic approaches aim to ensure cure without relapse, to prevent the occurrence of deaths and emergence of drug-resistant strains. In this context, this review article summarises the essential nanotechnology-related research outcomes in the treatment of tuberculosis (TB), including drug-susceptible and drug-resistant strains of Mtb. The novel anti-tuberculosis drug delivery systems are also being detailed. This article highlights recent advances in tuberculosis (TB) treatments, including the use of novel drug delivery technologies such as solid lipid nanoparticles, liposomes, polymeric micelles, nano-suspensions, nano-emulsion, niosomes, liposomes, polymeric nanoparticles and microparticles for the delivery of anti-TB drugs and hence eradication and control of both drug-susceptible as well as drug-resistant strains of Mtb.


2022 ◽  
pp. 87-117
Author(s):  
Valéria Maria de Oliveira Cardoso ◽  
Leonardo Miziara Barboza Ferreira ◽  
Edson José Comparetti ◽  
Isabella Sampaio ◽  
Natália Noronha Ferreira ◽  
...  

Nanomedicine ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 1239-1261 ◽  
Author(s):  
Amanda Cano ◽  
Elena Sánchez-López ◽  
Miren Ettcheto ◽  
Ana López-Machado ◽  
Marta Espina ◽  
...  

Effective intervention is essential to combat the coming epidemic of neurodegenerative (ND) diseases. Nanomedicine can overcome restrictions of CNS delivery imposed by the blood–brain barrier, and thus be instrumental in preclinical discovery and therapeutic intervention of ND diseases. Polymeric nanoparticles (PNPs) have shown great potential and versatility to encapsulate several compounds simultaneously in controlled drug-delivery systems and target them to the deepest brain regions. Here, we critically review recent advances in the development of drugs incorporated into PNPs and summarize the molecular changes and functional effects achieved in preclinical models of the most common ND disorders. We also briefly discuss the many challenges remaining to translate these findings and technological advances successfully to current clinical settings.


Sign in / Sign up

Export Citation Format

Share Document