cellulose acetate phthalate
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 16)

H-INDEX

23
(FIVE YEARS 2)

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3202
Author(s):  
Gustavo Vidal-Romero ◽  
Virginia Rocha-Pérez ◽  
María L. Zambrano-Zaragoza ◽  
Alicia Del Real ◽  
Lizbeth Martínez-Acevedo ◽  
...  

The aim of this work was to obtain pH-dependent nanofibers with an electrospinning technique as a novel controlled release system for the treatment of periodontal disease (PD). Cellulose acetate phthalate (CAP) was selected as a pH-sensitive and antimicrobial polymer. The NF was optimized according to polymeric dispersion variables, polymer, and drug concentration, and characterized considering morphology, diameter, entrapment efficiency (EE), process efficiency (PE), thermal properties, and release profiles. Two solvent mixtures were tested, and CHX-CAP-NF prepared with acetone/ethanol at 12% w/v of the polymer showed a diameter size of 934 nm, a uniform morphology with 42% of EE, and 55% of PE. Meanwhile, CHX-CAP-NF prepared with acetone/methanol at 11% w/v of polymer had a diameter of 257 nm, discontinuous nanofiber morphology with 32% of EE, and 40% of PE. EE and PE were dependent on the polymer concentration and the drug used in the formulation. Studies of differential scanning calorimetry (DSC) showed that the drug was dispersed in the NF matrix. The release profiles of CHX from CHX-CAP-NF followed Fickian diffusion dependent on time (t0.43−0.45), suggesting a diffusion–erosion process and a matrix behavior. The NF developed could be employed as a novel drug delivery system in PD.


2021 ◽  
Vol 03 (03) ◽  
pp. 1-1
Author(s):  
Bhaumik Patel ◽  
◽  
Yeshwanthi Kamineni ◽  
Shashank Gorityala ◽  
M Hima Bindu ◽  
...  

Dental caries are one of the major causes of oral degeneration diseases. In order to treat dental-related diseases, it is often challenging and expensive. Recent literature has reported many advances in designing delivery systems utilizing polymers and novel biomaterials. Polymers play an important role in designing many nanoformulations like liposomes, polymeric micelles, polymeric nanoparticles, carbon-based nanoparticles, nano-hydroxyapatite, iron oxide, zirconia, silica, and silver nanoparticles were used to treat oral complications of the oral cavity including dental caries, periodontal disease, and oral cancer. The present review focus on the importance of novel biodegradable polymers like poly (D, L-Lactide acid), PLLA (poly-L-lactide), PDLA (poly-D- lactide), PLGA that is poly (D, L Lactide-co-glycolide), cellulose acetate phthalate, and Chitosan, etc used to design site-specific delivery and controlled drug delivery to treat dental diseases. Moreover, research development in this area will raise opportunities for the dentist, researchers, and pharmaceutical scientists to fabricate an ideal drug delivery system.


2021 ◽  
Vol 22 (3) ◽  
Author(s):  
Tahir Khuroo ◽  
Eman M. Mohamed ◽  
Sathish Dharani ◽  
Hamideh Afrooz ◽  
Sogra F. Barakh Ali ◽  
...  

2020 ◽  
Author(s):  
Noelia Nieto González ◽  
Antonella Obinu ◽  
Elisabetta Gavini ◽  
Paolo Giunchedi ◽  
Giovanna Rassu

Author(s):  
Audinarayana N ◽  
Anala Srinivasulu ◽  
Vellore Sruthikumari ◽  
Likitha ◽  
Ananda Deepak V

The principle in this present research is to formulate Mesalamine containing colon targeted tablets by using different polymers and evaluate the effect of different polymers in drug release pattern. The matrix tablets of Mesalamine are formulated by polysaccharides based polymers like Cellulose acetate phthalate (CAP), Ethyl cellulose (EC), Guar gum (GG) and Xanthan gum (XG) which protects the drug to release in Stomach and Small Intestine. The invitro drug dissolution investigation of F2 (GG and XG) Matrix tablet was controlled by swelling into a viscous gel in colonic pH, which have been accomplished as the best tablet. The optimized tablet F2 was found to be stable in stability study (short term) with reproducible evaluation data, which also shows the highest swelling index, increased viscosity in colonic pH. The drug release pattern from the F2 formulation follows swelling and erosion behavior. From the data it show that F2 tablets suitable for providing colon targeted drug delivery.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1771
Author(s):  
Bartosz Maciejewski ◽  
Vishnu Arumughan ◽  
Anette Larsson ◽  
Małgorzata Sznitowska

The following study is a continuation of the previous work on preparation of gastro-resistant films by incorporation of cellulose acetate phthalate (CAP) into the soft gelatin film. An extended investigation on the previously described binary Gelatin-CAP and ternary Gelatin-CAP-carrageenan polymer films was performed. The results suggest that the critical feature behind formation of the acid-resistant films is a spinodal decomposition in the film-forming mixture. In the obtained films, upon submersion in an acidic medium, gelatin swells and dissolves, exposing a CAP-based acid-insoluble skeleton, partially coated by a residue of other ingredients. The dissolution-hindering effect appears to be stronger when iota-carrageenan is added to the film-forming mixture. The drug release study performed in enhancer cells confirmed that diclofenac sodium is not released in the acidic medium, however, at pH 6.8 the drug release occurs. The capsules prepared with a simple lab-scale process appear to be resistant to disintegration of the shell structure in acid, although imperfections of the sealing have been noticed.


Sign in / Sign up

Export Citation Format

Share Document