scholarly journals The 2019 n2c2/OHNLP Track on Clinical Semantic Textual Similarity: Overview (Preprint)

Author(s):  
Yanshan Wang ◽  
Sunyang Fu ◽  
Feichen Shen ◽  
Sam Henry ◽  
Ozlem Uzuner ◽  
...  

BACKGROUND Semantic textual similarity is a common task in the general English domain to assess the degree to which the underlying semantics of 2 text segments are equivalent to each other. Clinical Semantic Textual Similarity (ClinicalSTS) is the semantic textual similarity task in the clinical domain that attempts to measure the degree of semantic equivalence between 2 snippets of clinical text. Due to the frequent use of templates in the Electronic Health Record system, a large amount of redundant text exists in clinical notes, making ClinicalSTS crucial for the secondary use of clinical text in downstream clinical natural language processing applications, such as clinical text summarization, clinical semantics extraction, and clinical information retrieval. OBJECTIVE Our objective was to release ClinicalSTS data sets and to motivate natural language processing and biomedical informatics communities to tackle semantic text similarity tasks in the clinical domain. METHODS We organized the first BioCreative/OHNLP ClinicalSTS shared task in 2018 by making available a real-world ClinicalSTS data set. We continued the shared task in 2019 in collaboration with National NLP Clinical Challenges (n2c2) and the Open Health Natural Language Processing (OHNLP) consortium and organized the 2019 n2c2/OHNLP ClinicalSTS track. We released a larger ClinicalSTS data set comprising 1642 clinical sentence pairs, including 1068 pairs from the 2018 shared task and 1006 new pairs from 2 electronic health record systems, GE and Epic. We released 80% (1642/2054) of the data to participating teams to develop and fine-tune the semantic textual similarity systems and used the remaining 20% (412/2054) as blind testing to evaluate their systems. The workshop was held in conjunction with the American Medical Informatics Association 2019 Annual Symposium. RESULTS Of the 78 international teams that signed on to the n2c2/OHNLP ClinicalSTS shared task, 33 produced a total of 87 valid system submissions. The top 3 systems were generated by IBM Research, the National Center for Biotechnology Information, and the University of Florida, with Pearson correlations of <i>r</i>=.9010, <i>r</i>=.8967, and <i>r</i>=.8864, respectively. Most top-performing systems used state-of-the-art neural language models, such as BERT and XLNet, and state-of-the-art training schemas in deep learning, such as pretraining and fine-tuning schema, and multitask learning. Overall, the participating systems performed better on the Epic sentence pairs than on the GE sentence pairs, despite a much larger portion of the training data being GE sentence pairs. CONCLUSIONS The 2019 n2c2/OHNLP ClinicalSTS shared task focused on computing semantic similarity for clinical text sentences generated from clinical notes in the real world. It attracted a large number of international teams. The ClinicalSTS shared task could continue to serve as a venue for researchers in natural language processing and medical informatics communities to develop and improve semantic textual similarity techniques for clinical text.

10.2196/23375 ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. e23375 ◽  
Author(s):  
Yanshan Wang ◽  
Sunyang Fu ◽  
Feichen Shen ◽  
Sam Henry ◽  
Ozlem Uzuner ◽  
...  

Background Semantic textual similarity is a common task in the general English domain to assess the degree to which the underlying semantics of 2 text segments are equivalent to each other. Clinical Semantic Textual Similarity (ClinicalSTS) is the semantic textual similarity task in the clinical domain that attempts to measure the degree of semantic equivalence between 2 snippets of clinical text. Due to the frequent use of templates in the Electronic Health Record system, a large amount of redundant text exists in clinical notes, making ClinicalSTS crucial for the secondary use of clinical text in downstream clinical natural language processing applications, such as clinical text summarization, clinical semantics extraction, and clinical information retrieval. Objective Our objective was to release ClinicalSTS data sets and to motivate natural language processing and biomedical informatics communities to tackle semantic text similarity tasks in the clinical domain. Methods We organized the first BioCreative/OHNLP ClinicalSTS shared task in 2018 by making available a real-world ClinicalSTS data set. We continued the shared task in 2019 in collaboration with National NLP Clinical Challenges (n2c2) and the Open Health Natural Language Processing (OHNLP) consortium and organized the 2019 n2c2/OHNLP ClinicalSTS track. We released a larger ClinicalSTS data set comprising 1642 clinical sentence pairs, including 1068 pairs from the 2018 shared task and 1006 new pairs from 2 electronic health record systems, GE and Epic. We released 80% (1642/2054) of the data to participating teams to develop and fine-tune the semantic textual similarity systems and used the remaining 20% (412/2054) as blind testing to evaluate their systems. The workshop was held in conjunction with the American Medical Informatics Association 2019 Annual Symposium. Results Of the 78 international teams that signed on to the n2c2/OHNLP ClinicalSTS shared task, 33 produced a total of 87 valid system submissions. The top 3 systems were generated by IBM Research, the National Center for Biotechnology Information, and the University of Florida, with Pearson correlations of r=.9010, r=.8967, and r=.8864, respectively. Most top-performing systems used state-of-the-art neural language models, such as BERT and XLNet, and state-of-the-art training schemas in deep learning, such as pretraining and fine-tuning schema, and multitask learning. Overall, the participating systems performed better on the Epic sentence pairs than on the GE sentence pairs, despite a much larger portion of the training data being GE sentence pairs. Conclusions The 2019 n2c2/OHNLP ClinicalSTS shared task focused on computing semantic similarity for clinical text sentences generated from clinical notes in the real world. It attracted a large number of international teams. The ClinicalSTS shared task could continue to serve as a venue for researchers in natural language processing and medical informatics communities to develop and improve semantic textual similarity techniques for clinical text.


2020 ◽  
Vol 27 (10) ◽  
pp. 1529-1537 ◽  
Author(s):  
Sam Henry ◽  
Yanshan Wang ◽  
Feichen Shen ◽  
Ozlem Uzuner

Abstract Objective The 2019 National Natural language processing (NLP) Clinical Challenges (n2c2)/Open Health NLP (OHNLP) shared task track 3, focused on medical concept normalization (MCN) in clinical records. This track aimed to assess the state of the art in identifying and matching salient medical concepts to a controlled vocabulary. In this paper, we describe the task, describe the data set used, compare the participating systems, present results, identify the strengths and limitations of the current state of the art, and identify directions for future research. Materials and Methods Participating teams were provided with narrative discharge summaries in which text spans corresponding to medical concepts were identified. This paper refers to these text spans as mentions. Teams were tasked with normalizing these mentions to concepts, represented by concept unique identifiers, within the Unified Medical Language System. Submitted systems represented 4 broad categories of approaches: cascading dictionary matching, cosine distance, deep learning, and retrieve-and-rank systems. Disambiguation modules were common across all approaches. Results A total of 33 teams participated in the MCN task. The best-performing team achieved an accuracy of 0.8526. The median and mean performances among all teams were 0.7733 and 0.7426, respectively. Conclusions Overall performance among the top 10 teams was high. However, several mention types were challenging for all teams. These included mentions requiring disambiguation of misspelled words, acronyms, abbreviations, and mentions with more than 1 possible semantic type. Also challenging were complex mentions of long, multi-word terms that may require new ways of extracting and representing mention meaning, the use of domain knowledge, parse trees, or hand-crafted rules.


2019 ◽  
Vol 53 (2) ◽  
pp. 3-10
Author(s):  
Muthu Kumar Chandrasekaran ◽  
Philipp Mayr

The 4 th joint BIRNDL workshop was held at the 42nd ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2019) in Paris, France. BIRNDL 2019 intended to stimulate IR researchers and digital library professionals to elaborate on new approaches in natural language processing, information retrieval, scientometrics, and recommendation techniques that can advance the state-of-the-art in scholarly document understanding, analysis, and retrieval at scale. The workshop incorporated different paper sessions and the 5 th edition of the CL-SciSumm Shared Task.


Heart ◽  
2021 ◽  
pp. heartjnl-2021-319769
Author(s):  
Meghan Reading Turchioe ◽  
Alexander Volodarskiy ◽  
Jyotishman Pathak ◽  
Drew N Wright ◽  
James Enlou Tcheng ◽  
...  

Natural language processing (NLP) is a set of automated methods to organise and evaluate the information contained in unstructured clinical notes, which are a rich source of real-world data from clinical care that may be used to improve outcomes and understanding of disease in cardiology. The purpose of this systematic review is to provide an understanding of NLP, review how it has been used to date within cardiology and illustrate the opportunities that this approach provides for both research and clinical care. We systematically searched six scholarly databases (ACM Digital Library, Arxiv, Embase, IEEE Explore, PubMed and Scopus) for studies published in 2015–2020 describing the development or application of NLP methods for clinical text focused on cardiac disease. Studies not published in English, lacking a description of NLP methods, non-cardiac focused and duplicates were excluded. Two independent reviewers extracted general study information, clinical details and NLP details and appraised quality using a checklist of quality indicators for NLP studies. We identified 37 studies developing and applying NLP in heart failure, imaging, coronary artery disease, electrophysiology, general cardiology and valvular heart disease. Most studies used NLP to identify patients with a specific diagnosis and extract disease severity using rule-based NLP methods. Some used NLP algorithms to predict clinical outcomes. A major limitation is the inability to aggregate findings across studies due to vastly different NLP methods, evaluation and reporting. This review reveals numerous opportunities for future NLP work in cardiology with more diverse patient samples, cardiac diseases, datasets, methods and applications.


2020 ◽  
Author(s):  
Mark Ormerod ◽  
Jesús Martínez del Rincón ◽  
Barry Devereux

BACKGROUND Semantic textual similarity (STS) is a natural language processing (NLP) task that involves assigning a similarity score to 2 snippets of text based on their meaning. This task is particularly difficult in the domain of clinical text, which often features specialized language and the frequent use of abbreviations. OBJECTIVE We created an NLP system to predict similarity scores for sentence pairs as part of the Clinical Semantic Textual Similarity track in the 2019 n2c2/OHNLP Shared Task on Challenges in Natural Language Processing for Clinical Data. We subsequently sought to analyze the intermediary token vectors extracted from our models while processing a pair of clinical sentences to identify where and how representations of semantic similarity are built in transformer models. METHODS Given a clinical sentence pair, we take the average predicted similarity score across several independently fine-tuned transformers. In our model analysis we investigated the relationship between the final model’s loss and surface features of the sentence pairs and assessed the decodability and representational similarity of the token vectors generated by each model. RESULTS Our model achieved a correlation of 0.87 with the ground-truth similarity score, reaching 6th place out of 33 teams (with a first-place score of 0.90). In detailed qualitative and quantitative analyses of the model’s loss, we identified the system’s failure to correctly model semantic similarity when both sentence pairs contain details of medical prescriptions, as well as its general tendency to overpredict semantic similarity given significant token overlap. The token vector analysis revealed divergent representational strategies for predicting textual similarity between bidirectional encoder representations from transformers (BERT)–style models and XLNet. We also found that a large amount information relevant to predicting STS can be captured using a combination of a classification token and the cosine distance between sentence-pair representations in the first layer of a transformer model that did not produce the best predictions on the test set. CONCLUSIONS We designed and trained a system that uses state-of-the-art NLP models to achieve very competitive results on a new clinical STS data set. As our approach uses no hand-crafted rules, it serves as a strong deep learning baseline for this task. Our key contribution is a detailed analysis of the model’s outputs and an investigation of the heuristic biases learned by transformer models. We suggest future improvements based on these findings. In our representational analysis we explore how different transformer models converge or diverge in their representation of semantic signals as the tokens of the sentences are augmented by successive layers. This analysis sheds light on how these “black box” models integrate semantic similarity information in intermediate layers, and points to new research directions in model distillation and sentence embedding extraction for applications in clinical NLP.


10.2196/23099 ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. e23099
Author(s):  
Mark Ormerod ◽  
Jesús Martínez del Rincón ◽  
Barry Devereux

Background Semantic textual similarity (STS) is a natural language processing (NLP) task that involves assigning a similarity score to 2 snippets of text based on their meaning. This task is particularly difficult in the domain of clinical text, which often features specialized language and the frequent use of abbreviations. Objective We created an NLP system to predict similarity scores for sentence pairs as part of the Clinical Semantic Textual Similarity track in the 2019 n2c2/OHNLP Shared Task on Challenges in Natural Language Processing for Clinical Data. We subsequently sought to analyze the intermediary token vectors extracted from our models while processing a pair of clinical sentences to identify where and how representations of semantic similarity are built in transformer models. Methods Given a clinical sentence pair, we take the average predicted similarity score across several independently fine-tuned transformers. In our model analysis we investigated the relationship between the final model’s loss and surface features of the sentence pairs and assessed the decodability and representational similarity of the token vectors generated by each model. Results Our model achieved a correlation of 0.87 with the ground-truth similarity score, reaching 6th place out of 33 teams (with a first-place score of 0.90). In detailed qualitative and quantitative analyses of the model’s loss, we identified the system’s failure to correctly model semantic similarity when both sentence pairs contain details of medical prescriptions, as well as its general tendency to overpredict semantic similarity given significant token overlap. The token vector analysis revealed divergent representational strategies for predicting textual similarity between bidirectional encoder representations from transformers (BERT)–style models and XLNet. We also found that a large amount information relevant to predicting STS can be captured using a combination of a classification token and the cosine distance between sentence-pair representations in the first layer of a transformer model that did not produce the best predictions on the test set. Conclusions We designed and trained a system that uses state-of-the-art NLP models to achieve very competitive results on a new clinical STS data set. As our approach uses no hand-crafted rules, it serves as a strong deep learning baseline for this task. Our key contribution is a detailed analysis of the model’s outputs and an investigation of the heuristic biases learned by transformer models. We suggest future improvements based on these findings. In our representational analysis we explore how different transformer models converge or diverge in their representation of semantic signals as the tokens of the sentences are augmented by successive layers. This analysis sheds light on how these “black box” models integrate semantic similarity information in intermediate layers, and points to new research directions in model distillation and sentence embedding extraction for applications in clinical NLP.


Information ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 484
Author(s):  
Pedro Fialho ◽  
Luísa Coheur ◽  
Paulo Quaresma

Two sentences can be related in many different ways. Distinct tasks in natural language processing aim to identify different semantic relations between sentences. We developed several models for natural language inference and semantic textual similarity for the Portuguese language. We took advantage of pre-trained models (BERT); additionally, we studied the roles of lexical features. We tested our models in several datasets—ASSIN, SICK-BR and ASSIN2—and the best results were usually achieved with ptBERT-Large, trained in a Brazilian corpus and tuned in the latter datasets. Besides obtaining state-of-the-art results, this is, to the best of our knowledge, the most all-inclusive study about natural language inference and semantic textual similarity for the Portuguese language.


2020 ◽  
pp. 383-391 ◽  
Author(s):  
Yalun Li ◽  
Yung-Hung Luo ◽  
Jason A. Wampfler ◽  
Samuel M. Rubinstein ◽  
Firat Tiryaki ◽  
...  

PURPOSE Electronic health records (EHRs) are created primarily for nonresearch purposes; thus, the amounts of data are enormous, and the data are crude, heterogeneous, incomplete, and largely unstructured, presenting challenges to effective analyses for timely, reliable results. Particularly, research dealing with clinical notes relevant to patient care and outcome is seldom conducted, due to the complexity of data extraction and accurate annotation in the past. RECIST is a set of widely accepted research criteria to evaluate tumor response in patients undergoing antineoplastic therapy. The aim for this study was to identify textual sources for RECIST information in EHRs and to develop a corpus of pharmacotherapy and response entities for development of natural language processing tools. METHODS We focused on pharmacotherapies and patient responses, using 55,120 medical notes (n = 72 types) in Mayo Clinic’s EHRs from 622 randomly selected patients who signed authorization for research. Using the Multidocument Annotation Environment tool, we applied and evaluated predefined keywords, and time interval and note-type filters for identifying RECIST information and established a gold standard data set for patient outcome research. RESULTS Key words reduced clinical notes to 37,406, and using four note types within 12 months postdiagnosis further reduced the number of notes to 5,005 that were manually annotated, which covered 97.9% of all cases (n = 609 of 622). The resulting data set of 609 cases (n = 503 for training and n = 106 for validation purpose), contains 736 fully annotated, deidentified clinical notes, with pharmacotherapies and four response end points: complete response, partial response, stable disease, and progressive disease. This resource is readily expandable to specific drugs, regimens, and most solid tumors. CONCLUSION We have established a gold standard data set to accommodate development of biomedical informatics tools in accelerating research into antineoplastic therapeutic response.


JAMIA Open ◽  
2020 ◽  
Author(s):  
Julian C Hong ◽  
Andrew T Fairchild ◽  
Jarred P Tanksley ◽  
Manisha Palta ◽  
Jessica D Tenenbaum

Abstract Objectives Expert abstraction of acute toxicities is critical in oncology research but is labor-intensive and variable. We assessed the accuracy of a natural language processing (NLP) pipeline to extract symptoms from clinical notes compared to physicians. Materials and Methods Two independent reviewers identified present and negated National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) v5.0 symptoms from 100 randomly selected notes for on-treatment visits during radiation therapy with adjudication by a third reviewer. A NLP pipeline based on Apache clinical Text Analysis Knowledge Extraction System was developed and used to extract CTCAE terms. Accuracy was assessed by precision, recall, and F1. Results The NLP pipeline demonstrated high accuracy for common physician-abstracted symptoms, such as radiation dermatitis (F1 0.88), fatigue (0.85), and nausea (0.88). NLP had poor sensitivity for negated symptoms. Conclusion NLP accurately detects a subset of documented present CTCAE symptoms, though is limited for negated symptoms. It may facilitate strategies to more consistently identify toxicities during cancer therapy.


2018 ◽  
Vol 25 (4) ◽  
pp. 1846-1862 ◽  
Author(s):  
Yaoyun Zhang ◽  
Olivia R Zhang ◽  
Rui Li ◽  
Aaron Flores ◽  
Salih Selek ◽  
...  

Suicide takes the lives of nearly a million people each year and it is a tremendous economic burden globally. One important type of suicide risk factor is psychiatric stress. Prior studies mainly use survey data to investigate the association between suicide and stressors. Very few studies have investigated stressor data in electronic health records, mostly due to the data being recorded in narrative text. This study takes the initiative to automatically extract and classify psychiatric stressors from clinical text using natural language processing–based methods. Suicidal behaviors were also identified by keywords. Then, a statistical association analysis between suicide ideations/attempts and stressors extracted from a clinical corpus is conducted. Experimental results show that our natural language processing method could recognize stressor entities with an F-measure of 89.01 percent. Mentions of suicidal behaviors were identified with an F-measure of 97.3 percent. The top three significant stressors associated with suicide are health, pressure, and death, which are similar to previous studies. This study demonstrates the feasibility of using natural language processing approaches to unlock information from psychiatric notes in electronic health record, to facilitate large-scale studies about associations between suicide and psychiatric stressors.


Sign in / Sign up

Export Citation Format

Share Document