Improved Rate Laws and Population Balance Simulation Methods; CRE Applications, Including the Combustion Synthesis of Valuable Nano-Particles

Author(s):  
Daniel E. Rosner

Using ‘flame-synthesized’ nanoparticles (nps) as one prototypical application, we illustrate our recent progress in two broad areas of current CRE-interest, viz., the development of: 1. Improved rate laws/transport coefficients for next-generation Eulerian, multi-(state) variable population-balance formulations, and 2. Quadrature-based multi-variate moment methods (hereafter QMOM) suitable for articulation with evolving Eulerian CFD simulation methods Admittedly, in previous work much insight was obtained by introducing deliberately (over-) simplified rate laws (for nucleation, Brownian coagulation, vapor growth/evaporation, sintering, thermophoresis,…) into the generally nonlinear integro-partial differential equation called the ‘population balance’ equation (PBE). However, despite the complexity of this equation, and the need to satisfy it along with many other local PDE-balance principles in multi-dimensional CRE environments, in our view current requirements for reactor design, as well as the frequent need to infer meaningful physico-chemical parameters based on laboratory measurements on populations rather than individual ‘particles’, make the introduction of more accurate rate/transport laws essential for next-generation particle synthesis reactor models. Our present examples are motivated both by measurements/calculations of the structure of laminar counterflow flames synthesizing Al2O3 nps and/or the predicted performance of well-mixed steady-flow devices in which sintering or sublimation occurs. Corresponding illustrative results, which focus on the rate laws for sphere dissolution or aggregate Brownian coagulation support our contentions that: i) systematic introduction of more accurate rate laws (including nucleation, sintering, growth, …)/transport coefficients will be essential to meet the quantitative demands of next-generation PBE-based CRE-simulation models for high-value particulate synthesis equipment, and, ii) QMOM is able to incorporate realistic rate laws and faithfully generate their effects on important ‘moments’ characterizing the product joint distribution functions.

1958 ◽  
Vol 36 (10) ◽  
pp. 1308-1318 ◽  
Author(s):  
G. E. Tauber

A generalized variational principle has been formulated which takes the phonon distribution functions and the external magnetic field into account, is valid for an arbitrary direction of the electric field and polarization of the lattice vibrations, and does not depend on any special form of the energy surfaces. The various transport coefficients, for both thermoelectric and thermomagnetic phenomena, are obtained by the Ritz method in terms of infinite determinants without requiring an explicit solution of the transport equations.


2016 ◽  
Vol 20 (3) ◽  
pp. 921-926 ◽  
Author(s):  
Mingliang Xie ◽  
Jin Li ◽  
Tingting Kong ◽  
Qing He

An improved moment model is proposed to solve the population balance equation for Brownian coagulation in the continuum-slip regime, and it reduces to a known one in open literature when the non-linear terms in the slip correction factor are ignored. The present model shows same asymptotic behavior as that in the continuum regime.


2008 ◽  
Vol 47 (21) ◽  
pp. 8505-8516 ◽  
Author(s):  
Kalekudithi Ekambara ◽  
Kumar Nandakumar ◽  
Jyeshtharaj B. Joshi

Author(s):  
Zhou Cheng-Long ◽  
Chen Ming ◽  
Xu An-An ◽  
Wang Fang

Sign in / Sign up

Export Citation Format

Share Document