scholarly journals Approach to Retrieve Regional Snowfall Distribution Using Remotely Sensed Snow Covered Area and Distributed Hydrological Model

1997 ◽  
Vol 41 ◽  
pp. 239-244
Author(s):  
Minjiao LU ◽  
Norio HAYAKAWA ◽  
Yoshihiro YOSHIOKA
2020 ◽  
Author(s):  
Kristoffer Aalstad ◽  
Sebastian Westermann ◽  
Joel Fiddes ◽  
James McCreight ◽  
Laurent Bertino

<p>Accurately estimating the snow water equivalent (SWE) that is stored in the worlds mountains remains a challenging and important unsolved problem. The SWE reconstruction approach, where the remotely sensed seasonal depletion of fractional snow-covered area (fSCA) is used with a snow model to build up the snowpack in reverse, has been used for decades to help tackle this problem retrospectively. Despite some success, this deterministic approach ignores uncertainties in the snow model, the meteorological forcing, and the remotely sensed fSCA. A trade-off has also existed between the desired temporal and spatial resolution of the satellite-retrieved fSCA depletion. Recently, ensemble-based data assimilation techniques that can account for the uncertainties inherent in the reconstruction exercise have allowed for probabilistic snow reanalyses. In addition, new higher resolution optical satellite constellations such as Sentinel-2 and the PlanetScope cubesats have been launched into polar orbit, potentially eliminating the aforementioned trade-off.</p><p>We combine these two developments, namely ensemble-based data assimilation and the emerging remotely sensed data streams, to see if snow reanalyses can be improved at the hillslope (100 m) scale in complex terrain. As a first step, we develop accurate high-resolution binary snow-cover maps using a terrestrial automatic camera system installed on a mountaintop near Ny-Ålesund (Svalbard, Norway). These maps are used to validate fSCA retrieved from various satellite sensors (MODIS, Sentinel-2 MSI, and Landsat 8 OLI) using algorithms ranging from simple thresholding of the normalized difference snow index to spectral unmixing. Through the validation, we demonstrate that the spectral unmixing technique can obtain unbiased fSCA retrievals at the hillslope scale. Next, we move to the Mammoth Lakes basin in the Californian Sierra Nevada, USA, where we have access to independent validation data retrieved from several Airborne Snow Observatory (ASO) and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) flights. Using these airborne retrievals as a reference, we show that fSCA can be retrieved at the hillslope scale with reasonable accuracy at an unprecedented near daily revisit period using a combination of the Landsat, Sentinel-2 MSI, RapidEye, and PlanetScope satellite constellations. In a series of data assimilation experiments we show how the combination of these constellations can lead to significant improvements in hillslope scale snow reanalyses as gauged by various evaluation metrics. Furthermore, it is suggested that an iterative ensemble smoother data assimilation scheme can provide more robust SWE estimates than other smoothers that have previously been proposed for snow reanalysis. We briefly conclude with thoughts as to the current impediments to conducting a global hillslope scale snow reanalysis and propose avenues for further research, such as how snow reanalyses can help in the prediction exercise.</p>


2002 ◽  
Vol 264 (1-4) ◽  
pp. 34-50 ◽  
Author(s):  
J. Andersen ◽  
G. Dybkjaer ◽  
K.H. Jensen ◽  
J.C. Refsgaard ◽  
K. Rasmussen

2011 ◽  
Vol 8 (6) ◽  
pp. 11485-11518 ◽  
Author(s):  
T. Skaugen ◽  
F. Randen

Abstract. A successful modelling of the snow reservoir is necessary for water resources assessments and the mitigation of spring flood hazards. A good estimate of the spatial probability density function (PDF) of snow water equivalent (SWE) is important for obtaining estimates of the snow reservoir, but also for modelling the changes in snow covered area (SCA), which is crucial for the runoff dynamics in spring. In a previous paper the PDF of SWE was modelled as a sum of temporally correlated gamma distributed variables. This methodology was constrained to estimate the PDF of SWE for snow covered areas only. In order to model the PDF of SWE for a catchment, we need to take into account the change in snow coverage and provide the spatial moments of SWE for both snow covered areas and for the catchment as a whole. The spatial PDF of accumulated SWE is, also in this study, modelled as a sum of correlated gamma distributed variables. After accumulation and melting events the changes in the spatial moments are weighted by changes in SCA. The spatial variance of accumulated SWE is, after both accumulation- and melting events, evaluated by use of the covariance matrix. For accumulation events there are only positive elements in the covariance matrix, whereas for melting events, there are both positive and negative elements. The negative elements dictate that the correlation between melt and SWE is negative. The negative contributions become dominant only after some time into the melting season so at the onset of the melting season, the spatial variance thus continues to increase, for later to decrease. This behaviour is consistent with observations and called the "hysteretic" effect by some authors. The parameters for the snow distribution model can be estimated from observed historical precipitation data which reduces by one the number of parameters to be calibrated in a hydrological model. Results from the model are in good agreement with observed spatial moments of SWE and SCA and found to provide better estimates of the spatial variability than the current model for snow distribution used in the HBV model, the hydrological model used for flood forecasting in Norway. When implemented in the HBV model, simulations show that the precision in predicting runoff is maintained although there is one parameter less to calibrate.


2003 ◽  
Vol 26 (2) ◽  
pp. 151-159 ◽  
Author(s):  
J.M. Schuurmans ◽  
P.A. Troch ◽  
A.A. Veldhuizen ◽  
W.G.M. Bastiaanssen ◽  
M.F.P. Bierkens

2011 ◽  
Vol 15 (3) ◽  
pp. 759-769 ◽  
Author(s):  
J. M. Schuurmans ◽  
F. C. van Geer ◽  
M. F. P. Bierkens

Abstract. This study shows that remotely sensed ETact is useful in hydrological modelling for the procedure of model calibration and shows it potential to update soil moisture predictions. Comparison of modeled and remotely sensed ETact together with the outcomes of our data assimilation procedure points out potential model errors, both conceptual and flux-related. Assimilation of remotely sensed ETact results in a realistic spatial adjustment of soil moisture, except for the area where the model suffers from conceptual errors (forest with deep groundwater levels). By using operational (i.e. available for community in practice) data and models we aim to show the potential and limitations of using remotely sensed ETact in the practice of hydrological modelling. We use satellite data of both ASTER and MODIS for the same two days in the summer of 2006 that, in association with the Surface Energy Balance Algorithm for Land (SEBAL), provides us the spatial distribution of daily ETact. The model, used by the local water board, is a physically based distributed hydrological model of a small catchment (70 km2) in The Netherlands that simulates the water flow in both the unsaturated and saturated zone. Model outcomes of ETact show values that are at least 20% lower than those estimated by SEBAL, which is due to the fact that different evapotranspiration methods are used. The spatial pattern of ETact from the hydrological model resembles the soil map, whereas the ETact from SEBAL resembles the land use map. As both ASTER and MODIS images were available for the same days, this study provides an opportunity to compare the worth of these two satellite sources. It is shown that, although ASTER provides better insight in the spatial distribution of ETact due to its higher spatial resolution than MODIS, they appeared in this study just as useful.


2010 ◽  
pp. n/a-n/a ◽  
Author(s):  
Brian J. Harshburger ◽  
Karen S. Humes ◽  
Von P. Walden ◽  
Troy R. Blandford ◽  
Brandon C. Moore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document