scholarly journals Anaerobic Digestion and Codigestion of Chlorella Vulgaris Microalgae Biomass with Wastewater Sludge and Dairy Manure for Biogas Production

2017 ◽  
Vol 13 (3) ◽  
pp. 18-26 ◽  
Author(s):  
Saad H. Ammar ◽  
Sadiq Riyadh Khodhair

Abstract   Anaerobic digestion process of organic materials is biochemical decomposition process done by two types of digestion bacteria in the absence of oxygen resulting in the biogas production, which is produced as a waste product of digestion. The first type of bacteria is known as acidogenic which converts organic waste to fatty acids. The second type of bacteria is called methane creators or methanogenic which transforms the fatty acids to biogas (CH4 and CO2). The considerable amounts of biodegradable constitutes such as carbohydrates, lipids and proteins present in the microalgae biomass make it a suitable substrate for the anaerobic digestion or even co-digested with other organic wastes. The present work investigated methane biogas production by anaerobic codigestion of microalgae, Chlorella vulgaris biomass with organic waste from several sources such as wastewater sludge and dairy manure waste in different proportions as an additional carbon supply to enhance anaerobic digestion and therefore biogas production. Six bottles, employed as batch biodigesters each of 1 liter capacity, were used for that purpose at moderate conditions (35±2 oC). The produced biogas volume was monitored daily along 35 days and the results showed that the daily and cumulative biogas production was increased 4.5 times and 3 times for the bottles with 66.67% microalgae compared with the bottles with wastewater sludge or dairy manure waste only, respectively.  Keywords: Anaerobic codigestion, biogas; dairy manure, microalgae Chlorella Vulgaris, wastewater sludge.

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 590
Author(s):  
Aiban Abdulhakim Saeed Ghaleb ◽  
Shamsul Rahman Mohamed Kutty ◽  
Gasim Hayder Ahmed Salih ◽  
Ahmad Hussaini Jagaba ◽  
Azmatullah Noor ◽  
...  

Man-made organic waste leads to the rapid proliferation of pollution around the globe. Effective bio-waste management can help to reduce the adverse effects of organic waste while contributing to the circular economy at the same time. The toxic oily-biological sludge generated from oil refineries’ wastewater treatment plants is a potential source for biogas energy recovery via anaerobic digestion. However, the oily-biological sludge’s carbon/nitrogen (C/N) ratio is lower than the ideal 20–30 ratio required by anaerobic digestion technology for biogas production. Sugarcane bagasse can be digested as a high C/N co-substrate while the oily-biological sludge acts as a substrate and inoculum to improve biogas production. In this study, the best C/N with co-substrate volatile solids (VS)/inoculum VS ratios for the co-digestion process of mixtures were determined empirically through batch experiments at temperatures of 35–37 °C, pH (6–8) and 60 rpm mixing. The raw materials were pre-treated mechanically and thermo-chemically to further enhance the digestibility. The best condition for the sugarcane bagasse delignification process was 1% (w/v) sodium hydroxide, 1:10 solid-liquid ratio, at 100 °C, and 150 rpm for 1 h. The results from a 33-day batch anaerobic digestion experiment indicate that the production of biogas and methane yield were concurrent with the increasing C/N and co-substrate VS/inoculum VS ratios. The total biogas yields from C/N 20.0 with co-substrate VS/inoculum VS 0.06 and C/N 30.0 with co-substrate VS/inoculum VS 0.18 ratios were 2777.0 and 9268.0 mL, respectively, including a methane yield of 980.0 and 3009.3 mL, respectively. The biogas and methane yield from C/N 30.0 were higher than the biogas and methane yields from C/N 20.0 by 70.04 and 67.44%, respectively. The highest biogas and methane yields corresponded with the highest C/N with co-substrate VS/inoculum VS ratios (30.0 and 0.18), being 200.6 mL/g VSremoved and 65.1 mL CH4/g VSremoved, respectively.


Author(s):  
Kai Schumüller ◽  
Dirk Weichgrebe ◽  
Stephan Köster

AbstractTo tap the organic waste generated onboard cruise ships is a very promising approach to reduce their adverse impact on the maritime environment. Biogas produced by means of onboard anaerobic digestion offers a complementary energy source for ships’ operation. This report comprises a detailed presentation of the results gained from comprehensive investigations on the gas yield from onboard substrates such as food waste, sewage sludge and screening solids. Each person onboard generates a total average of about 9 kg of organic waste per day. The performed analyses of substrates and anaerobic digestion tests revealed an accumulated methane yield of around 159 L per person per day. The anaerobic co-digestion of sewage sludge and food waste (50:50 VS) emerged as particularly effective and led to an increased biogas yield by 24%, compared to the mono-fermentation. In the best case, onboard biogas production can provide an energetic output of 82 W/P, on average covering 3.3 to 4.1% of the total energy demand of a cruise ship.


2015 ◽  
Vol 10 (3) ◽  
pp. 532-537 ◽  
Author(s):  
Yumika Kitazono ◽  
Ikko Ihara ◽  
Kiyohiko Toyoda ◽  
Kazutaka Umetsu

This study evaluated antibiotic degradation and biogas production during anaerobic digestion of dairy manure contained two common veterinary antibiotics at 37 °C. After 18 days of digestion, the concentration of chlortetracycline (CTC) decreased more than 80% regardless of the initial CTC concentration. The concentration of cefazolin (CEZ) decreased from 10 to 0.08 mg/L in 6 days. Less than 50 mg/L CTC and 10 mg/L CEZ had negligible impact on biogas production during anaerobic digestion process. The result showed that the anaerobic digestion has a potential to degrade antibiotic residues in livestock manure.


2018 ◽  
Vol 36 (11) ◽  
pp. 1106-1112 ◽  
Author(s):  
Xiaohui Guo ◽  
Kang Kang ◽  
Gaoyuan Shang ◽  
Xiunan Yu ◽  
Ling Qiu ◽  
...  

The mesophilic reactor (MR) exhibited advantages in biogas production and performance stability over thermophilic reactor (TR) during the long-term anaerobic digestion (AD) of food waste (FW) with stepwise organic loading rate elevating. It was interesting to explore the mechanism causing the divergences in performances between these two reactors. The microbial activity was compared on day 110 when TR began to deteriorate. The results show that MR had significantly higher specific acetoclastic methanogenic activities (SAMA) and specific propionate and butyrate oxidative activities (SPOA and SBOA) than TR. The SAMA, SPOA and SBOA in TR were only 50.3%, 18.6% and 46.4% of those values in MR, respectively. Remarkably, the specific hydrogenotrophic methanogenic activity of 15.5±2.1, 15.7±4.6 mmol CH4·L−1 original slurry·d−1 in MR and TR was comparative with insignificant difference, which indicates that the microbial activity in TR had been inhibited widely apart from the hydrogenotrophic methanogenesis. Additionally, many particles with the diameters of 1–2 mm were observed to form in MR and identified as complexes of calcium and long chain fatty acids (LCFAs). The formation of calcium crystallization might alleviate the inhibition of LCFAs during AD of FW, which further supports the better performance in MR than TR.


2011 ◽  
Vol 356-360 ◽  
pp. 2510-2514 ◽  
Author(s):  
Ming Fen Niu ◽  
Sai Yue Wang ◽  
Wen Di Xu ◽  
An Dong Ge ◽  
Hao Wang

In order to improve the rate of degradation of cellulose in corn straw, the study has an important significance that compost corn straw with inoculating high-efficient microbe agents. The experiment inoculated a cellulose-degrading strain F2 which was screened from compost into compost pretreatment, the VS of corn straw reduced from 93.14% to 71.69% after 15 days, the content of cellulose reduced from 34.12g·kg-1 to 25.66g·kg-1, the rate of degradation was 24.79% which was 10.60% higher than those without the strain. An anaerobic fermentation experiment was carried out with the two groups of composted corn straw and mixed pig feces with a certain ratio, and investigations of biogas production, pH, content of volatile fatty acids(VFA) and rate of methane production were conducted. The results were that the corn straw composted with the cellulose-degrading strain peaked 4 days earlier, the maximal daily biogas production was 1470mL, the cumulative biogas production reached 23641mL which was 16.87% higher and operated stably earlier. The study showed that the cellulose-degrading strain had a strong capacity to degrade cellulose in corn straw, and then improved the performance of anaerobic digestion.


2016 ◽  
Vol 75 (4) ◽  
pp. 775-781 ◽  
Author(s):  
J. A. Barrios ◽  
U. Duran ◽  
A. Cano ◽  
M. Cisneros-Ortiz ◽  
S. Hernández

Anaerobic digestion of wastewater sludge is the preferred method for sludge treatment as it produces energy in the form of biogas as well as a stabilised product that may be land applied. Different pre-treatments have been proposed to solubilise organic matter and increase biogas production. Sludge electrooxidation with boron-doped diamond electrodes was used as pre-treatment for waste activated sludge (WAS) and its effect on physicochemical properties and biomethane potential (BMP) was evaluated. WAS with 2 and 3% total solids (TS) achieved 2.1 and 2.8% solubilisation, respectively, with higher solids requiring more energy. After pre-treatment, biodegradable chemical oxygen demand values were close to the maximum theoretical BMP, which makes sludge suitable for energy production. Anaerobic digestion reduced volatile solids (VS) by more than 30% in pre-treated sludge with a food to microorganism ratio of 0.15 g VSfed g−1 VSbiomass. Volatile fatty acids were lower than those for sludge without pre-treatment. Best pre-treatment conditions were 3% TS and 28.6 mA cm−2.


2014 ◽  
Vol 675-677 ◽  
pp. 680-684
Author(s):  
Zhao Mei Du ◽  
Qin Wu ◽  
Xiao Qin Zhang

The feasibility of pulp and paper mill wastewater sludge as substrates for biogas production was evaluated in labrotory scale. Also the influence of pre-acidification, feeding modes and sludge concentration on anaerobic digestion system were studied.


Sign in / Sign up

Export Citation Format

Share Document