scholarly journals AN ALTERNATIVE APPROACH ON BIOREMEDIATION OF HEAVY METALS IN TANNERY EFFLUENTS WASTE USING STREPTOMYCES SP.

Author(s):  
Thirumurugan D ◽  
Ibrahim Adamu Karfi ◽  
Vijayakumar R ◽  
Nithya Tg

  Objective: The present study is conducted to investigate the abilities of microorganisms to degrade heavy metals in industrial tannery effluent sample.Methods: Tannery effluent sample was collected from effluent treatment plant and analyzed for physicochemical parameters. The potential microbes were isolated and identified by morphological and biochemical characterization. The sample was analyzed before and after to assess the heavy metal reducing the ability of the microorganism and the respective percentage of reduction were studied using X-ray fluorescence spectrometry.Results: The samples were initially found to be highly contaminated with chromium, nickel, and cadmium. Out of three potential isolates, the isolate Streptomyces sp. was found to exhibit a better reduction against chromium (25.7%), cadmium (14.6%), and nickel (23.1%) in 50 ppm at longer incubation period. Comparatively, the reduction abilities of all the three isolates against all the three heavy metals increased with the increase in the incubation period but decreased with the increase in initial metal ion concentration except in the case of Streptomyces sp. against nickel where the reducing ability increased with the increase in metal concentration.Conclusion: Apparently, the present study revealed that Streptomyces sp. had a better remediation potential than the indigenous Pseudomonas sp. and Aspergillus sp. Ultimately, the finding of this research has shown that the Streptomyces sp. can be used as a potent bioremediation agent for treating tannery and industrial effluent in an eco-friendly process.

Author(s):  
Shipra Jha ◽  
S. N. Dikshit

Heavy metal pollution in wastewater has always been a serious environmental problem because heavy metals are not biodegradable and can be accumulated in living tissues. Copper is widely used in various important industrial applications. The increasing level of heavy metals in the aquatic system due to incomplete treatment of industrial wastewater by existing conventional methods is of environmental concern. Therefore, there has been an increasing interest in the possibility of using biological treatments. It is important to evaluate the performance of biomass with actual industrial effluent to ensure its field applicability. Hence the experiments were conducted with actual industrial effluents collected from Effluent Treatment Plant (ETP) and tannery industry.


1992 ◽  
Vol 25 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Larbi Tebai ◽  
Ioannis Hadjivassilis

Soft drinks industry wastewater from various production lines is discharged into the Industrial Effluent Treatment Plant. The traditional coagulation/flocculation method as first step, followed by biological treatment as second step, has been adopted for treating the soft drinks industry wastewaters. The performance of the plant has been evaluated. It has been found that the effluent characteristics are in most cases in correspondence with the requested standards for discharging the effluent into the Nicosia central sewerage system.


1992 ◽  
Vol 25 (10) ◽  
pp. 55-67 ◽  
Author(s):  
R. C. Squires

The performance of Exxflow, a patented form of crossflow microfiltration, treating industrial wastewaters containing mixed heavy metals discharged by two types of industry is quantified and compared with the traditional technologies used for such treatment. Pilot trial results using Exxflow are shown and compared to the performance of the full scale plants now operating on these effluents. The operating costs of the Exxflow process are estimated for the two plants. One of which has been operating for 18 months and the other about 4 months. The Exxflow process is described and improvements which are being developed to lower the operating costs are presented. It is shown that industrial effluents containing mixed heavy metals are very effectively treated by the Exxflow process and since the installation of the plants the treated effluent has been of a quality suitable for discharge to the River Thames in one case and to a sewage treatment plant in the other. Unlike other processes, Exxflow has shown that it can successfully treat effluent containing mixed metals and that removal of antimony from mixed metal waste waters is affected by the concentration of sodium sulphate in the wastewater.


2018 ◽  
Vol 34 (6) ◽  
pp. 2977-2982
Author(s):  
M. J. Suresh ◽  
P. Rajiv

Phytoremediation is one of the best methods in the treatment of sludge from industries because the pollutants present in the sludge are the food source for plants. So, the present study dealt with wedging the electro-plated sludge with red soil for 30 days and using it for the growth of Helianthus annuus L. The sludge and soil were blended in different concentrations C1, C2, C3, C4, C5 and C6 (for the pre-treatment). Physicochemical parameters (pH, ammoniacal nitrogen, potassium and phosphate) and heavy metals (Ar, Cd, Pb, Hg, Ni and Cr) of raw sludge, soil and ETP-treated-sludge with soil were analysed. After inspecting the physicochemical parameters of raw sludge and treated sludge, the soil-treated-sludge was used for the growth of Helianthus annuus L. Phytoremediation by Helianthus annuus L. has made considerable changes in the physicochemical properties of the soil, specially denoting the reduction of chromium. Thus, the work concludes that the pre-treated sludge provides a pathway for the uptake of heavy metals through the process of phytoremediation.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2309-2312 ◽  
Author(s):  
J. S. D'Avila ◽  
C. M. Matos ◽  
M. R. Cavalcanti

The processes used to remove heavy metals from inorganic wastewater have in general low efficiency. The use of activated peat obtained by using a process similar to a cation exchange reaction increases the removal efficiency up to five times when compared with peat “in natura”. The main objective of this work is to show the fundamental mathematical model, governed by diffusion process and the algorithms utilized to design the batch and the continuous feed stirred tank reactors or in some cases a fixed bed reactor. The principal dimensions of these equipments are obtained from the knowledge of the activated peat's cation exchange capacity used in the process, and the main chemical characteristics of the heavy metal ion contained in the wastewater. Besides, two important parameters are also included: the ion concentration and the efficiency of the process obtained from laboratory kinetics experiments. For example Pb+2 is removed l:rom a wastewater at a concentration of 50g/m3 in five minutes or less, with an efficiency of 98%.


2016 ◽  
Vol 74 (7) ◽  
pp. 1644-1657 ◽  
Author(s):  
Mona El-Sayed ◽  
Gh. Eshaq ◽  
A. E. ElMetwally

In our study, Mg–Al–Zn mingled oxides were prepared by the co-precipitation method. The structure, composition, morphology and thermal stability of the synthesized Mg–Al–Zn mingled oxides were analyzed by powder X-ray diffraction, Fourier transform infrared spectrometry, N2 physisorption, scanning electron microscopy, differential scanning calorimetry and thermogravimetry. Batch experiments were performed to study the adsorption behavior of cobalt(II) and nickel(II) as a function of pH, contact time, initial metal ion concentration, and adsorbent dose. The maximum adsorption capacity of Mg–Al–Zn mingled oxides for cobalt and nickel metal ions was 116.7 mg g−1, and 70.4 mg g−1, respectively. The experimental data were analyzed using pseudo-first- and pseudo-second-order kinetic models in linear and nonlinear regression analysis. The kinetic studies showed that the adsorption process could be described by the pseudo-second-order kinetic model. Experimental equilibrium data were well represented by Langmuir and Freundlich isotherm models. Also, the maximum monolayer capacity, qmax, obtained was 113.8 mg g−1, and 79.4 mg g−1 for Co(II), and Ni(II), respectively. Our results showed that Mg–Al–Zn mingled oxides can be used as an efficient adsorbent material for removal of heavy metals from industrial wastewater samples.


2013 ◽  
Vol 467 ◽  
pp. 240-246 ◽  
Author(s):  
Monica Puccini ◽  
Maurizia Seggiani ◽  
Domenico Castiello ◽  
Sandra Vitolo

Tannery effluent treatment plant sludge is a by-product of leather-making industry in which chrome compounds are the most common used materials. The aim of this work was to investigate the effects and feasibility in the use of tannery sludge ash as a partial or totally replacement of usual mineral filler such as CaCO3in manufacture of waterproofing membranes. The effects of sludge ash on the morphology and mechanical properties of membranes were investigated. Leaching tests were carried out in order to guarantee that the fulfillment of filler function was done in respect with environmental criteria. The results in terms of performances and leaching tests indicate that tannery sludge ash could be used as total replacement of CaCO3for waterproofing membranes. This work has to be intended as the first step of a study whose final goal is to find an effective, industrially applicable, way to improve recycling capabilities of tannery effluent treatment plant sludge in systems like roofing and waterproofing membranes thus solving an economical and environmental problem.


2005 ◽  
Vol 23 (2) ◽  
pp. 145-160 ◽  
Author(s):  
N. Vennilamani ◽  
K. Kadirvelu ◽  
Y. Sameena ◽  
S. Pattabhi

Activated carbon (AC) prepared from sago waste was characterized and used to remove chromium(VI) ions from aqueous solution and industrial effluent by adsorption methods using various conditions of agitation time, metal ion concentration, adsorbent dosage particle size and pH. Surface modification of the carbon adsorbent with a strong oxidizing agent like concentrated H2SO4 generates more active adsorption sites on the solid surface and pores for metal ion adsorption. Adsorption of the metal ion required a very short time and led to quantitative removal. Both the Langmuir and Freundlich isotherm models could describe the adsorption data. The calculated values of Q0 and b were 5.78 mg/g and 1.75 1/min, respectively. An effective adsorption capacity was noted for particle sizes in the range 125–250 μm at room temperature (30 ± 2°C) and an initial pH of 2.0 ± 0.2. The specific surface area of the activated carbon was determined and its properties studied by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FT-IR). These studies revealed that AC prepared from sago waste is suitable for the removal of Cr(VI) ions from both synthetic and industrial effluents.


2020 ◽  
Vol 32 (4) ◽  
pp. 876-880
Author(s):  
Maninder Singh ◽  
D. P. Tiwari ◽  
Mamta Bhagat

The indiscriminate discharge of heavy metals into water and soil from anthropogenic practices is becoming prominent threat to the environment. Heavy metals like chromium, cadmium, lead, arsenic, nickel etc. are heavily toxic and carcinogenic in nature. This study emphasizes the adequacy of activated water chest nut (Trapa natans) peel powder as a new adsorbent material for removal of chromium(VI) metal ions. Adsorption experiments were performed in batch process. Various process parameters like contact time, temperature, solution pH, dose of adsorbent, metal ion concentration etc. were optimized. The physico-chemical properties of adsorbent material were characterized by FTIR and XRD. The morphology, topology of adsorbent surface was characterized by scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) which revealed a highly porous structure and available specific surface area. The adsorption capacity (maximum) was counted as 59.17 mg/g and specific surface area was found 23.467 m2/g at a pH 7. The adsorption process for Cr(VI) ions was in a good agreement with Langmuir isotherm. The process also followed pseudo second order kinetics. The obtained result shows that activated water chest nut (Trapa natans) peel powder (AWCPP) can be a hopeful low-cost and eco-friendly bio-adsorbent for removal of Cr(VI) metal ions and also better adsorbent than other various reported adsorbents.


Sign in / Sign up

Export Citation Format

Share Document