scholarly journals ASSESSMENT OF PHYTOCHEMICAL CONSTITUENTS, IN VITRO ANTIMICROBIAL AND ANTIOXIDANT POTENTIAL OF ULVA EXTRACTS FROM VISHAKHAPATNAM COAST

Author(s):  
Princely S ◽  
Dhanaraju Md

  Objective: Antimicrobial drug resistance is the foremost problem faced worldwide with the current antibiotic therapy in treating infectious diseases. Marine algae were considered as a potential source of biologically active compounds with antibacterial, antifungal, antiviral, and anticancer activities.Materials and Methods: In the present investigation, the purified fractions of marine algal crude extracts of different solvents such as aqueous, ethyl acetate (EtAc), and ethanol for antioxidant (1,1-diphenyl-2-picrylhydrazyl radical scavenging assay) and antimicrobial activities (agar well diffusion assay) were evaluated.Results: The extracts of EtAc, ethanol, and water showed minimum inhibitory concentration values of 3.125, 6.25, and 12.25 μg/ml, respectively, for tested bacterial pathogens. The active fractions showed very little activity against Klebsiella pneumonia and Salmonella Typhi, and no activity was observed against Pseudomonas aeruginosa. The results of our screening showed that the EtAc marine algal fractions were active against some Gram-positive, Gram-negative bacteria and Candida albicans. The phytochemical analysis of aqueous, ethanolic, and EtAc extracts of marine algae showed the presence of the various phytochemical constituents such as carbohydrates, phenols, and amino acids. The ethanolic extracts showed the highest antioxidant activity as compared to aqueous and EtAc extracts.Conclusion: This work can be extended further to isolate, characterize, and discover more bioactive metabolites from marine algae, which can be exploited for the production of lead molecules in pharmaceuticals for the treatment of chronic diseases.

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2626
Author(s):  
Wael Sobhy Darwish ◽  
Abada El Sayed Khadr ◽  
Maher Abd El Naby Kamel ◽  
Mabrouk A. Abd Eldaim ◽  
Ibrahim El Tantawy El Sayed ◽  
...  

Ceratonia siliqua (Carob) is an evergreen Mediterranean tree, and carob pods are potentially nutritive and have medicinal value. The present study was carried out to estimate the possible biological activities of phytochemical-characterized carob pod aqueous extract (CPAE). The phytochemical contents of CPAE were determined by using colorimetric methods and HPLC. In addition, the free radical scavenging properties and anti-diabetic, anti-hemolytic, and antimicrobial activities were estimated by using standardized in vitro protocols. The phytochemical analysis revealed that CPAE was rich in polyphenols, flavonoids, and alkaloids, where it contained a significant amount of gallic acid, catechin, and protocatechuic acid. Furthermore, CPAE exhibited strong antioxidant activity where it prevented the formation of 2, 2-Diphenyl-1-picryl hydrazyl, hydroxyl, and nitric oxide free radicals. Additionally, it had a potent inhibitory effect against digestive enzymes (amylase, maltase, sucrase, and lactase). Moreover, CPAE exhibited anti-Staph aureus, anti-Escherichia coli, anti-Candida albicans, and anti-herpes simplex type I virus (HSV-I). Finally, CPAE protected the erythrocyte membrane from hypotonic solution-induced hemolysis. Altogether, CPAE could be regarded as an interesting source of biologically active antioxidant, anti-diabetic, and antimicrobial preparation for a potential application in pharmaceutical and food supplement fields.


2021 ◽  
Vol 67 (3) ◽  
pp. 204-211
Author(s):  
Djouza Salmi ◽  
Catherine Riou ◽  
Mohammad Issawi ◽  
Yacine Titouche ◽  
Veronica Ambrosini ◽  
...  

Nettle (Urtica dioica L), as a plant rich in biologically active compounds, is one of the most important plants used in herbal medicine. Studies have shown that this plant has antioxidant, antiplatelet, hypoglycemic and hypocholesterolemia effects. In this study, we characterized three Alternaria endophytic fungi isolated from their host U. dioica. We hypothesized that these endophytic fungi can produce new bioactive metabolites, which may possess the bioactive property with potential application in the medical and pharmaceutical industries. The antibacterial activity was evaluated against reference and isolated strains, including Methicillin-Resistant Staphylococcus aureus. A wide range of antimicrobial activities similar to those measured in nettle leaves was detected especially for Alternaria sorghi. Furthermore, the highest antioxidant activity detected with DPPH free radical scavenging was measured for A. sorghi and nettle leaves ethyl acetate extracts. In addition, whereas catalase activity was similar in the three isolated fungi and nettle leaves, total thiol content and superoxide dismutase activity were significantly higher in leaves. A. sorghi showed the best activities compared to other isolated fungi. The characterization and further production of bioactive compounds produced by this endophyte should be investigated to fight bacteria and especially those that develop drug multi-resistance.


Author(s):  
Nabil Q. M. Al-Hajj

This study aimed to investigate the phytochemical, antimicrobial, and antioxidant activities of Carica papaya L. seeds extracts collected from Al Hudaydah city, Yemen (Latitude: 14°47′52″ N Longitude: 42°57′16″ E) during the months of January and February 2021. The seed was extracted with different solvents by the cold percolation method. The disk diffusion method was employed to assess the antibacterial activity of the seed extract against six bacterial and four fungal strains. Spectrometric methods were employed to calculate the total alkaloids, anthocyanin, flavonoid, phenolic, quinones, saponin, steroids, terpenoid, tannin, and phenols contents, as well as the antioxidant activities. Antibacterial and antifungal activity tests exhibited that the selected microorganisms are highly sensitive to the ethanolic and methanolic extracts of C. papaya L. seeds, followed by chloroform, water, and n-hexane extracts. The samples also demonstrated a significant DPPH, FRAP, and APTS radical scavenging activity. Additionally, the preliminary phytochemical analysis revealed the presence of flavonoid, terpenoid, saponin, alkaloids, steroids, quinones, anthocyanin, tannin, and phenols, all of which potentially contribute to the antimicrobial activities of C. papaya L. seeds.


Author(s):  
THAMARAIKANI V ◽  
AMALA S DIVYA ◽  
SEKAR T

Objective: Ficus tsjahela Burm. f is a medicinal tree species, endemic to the Western Ghats having various healing properties. This study focused to check the antioxidant and antimicrobial activities of the leaf, bark, and fruit samples of F. tsjahela. Methods: The plant samples were subjected to Soxhlet extraction for phytochemical analysis and further experimental studies. The test on phytochemical studies indicated the presence of alkaloids, saponins, glycosides, and flavonol glycosides within the plant parts, respectively. The estimation of alkaloids, saponins, in vitro antioxidant, and antibacterial activities revealed that the methanol bark extracts have high activity compared to others. Results: Total alkaloid and saponin content was found to be high in leaf methanol extract was 996.17 mg/g quinine equivalent/g and 957.3 mg/g diosgenin equivalent/g, respectively. In vitro antioxidant assays revealed a strong radical scavenging potential of the methanol bark extract against stable (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), phosphomolybdenum, and superoxide radicals. Agar well diffusion method has been used to determine the antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli, Acetobacter aceti, and Pseudomonas aeruginosa). Conclusion: The bark methanol extract of F. tsjahela has exhibited remarkable antioxidant activity and significant antibacterial activity (p<0.05) against all tested bacterial strains observed.


Author(s):  
Dipeshkumar Patel ◽  
Falaknaaz Shaikh

Medicaments, plants and plant-based are the basis of many of the modern pharmaceuticals we use today for our various purposes. The aim of the present study was to evaluate the antioxidant, phytochemical and antibacterial and antifungal activities of the Achyranthes aspera plant extract in different organic solvents. The radical scavenging activity of the different extracts of root, stem, leaf, and seed were evaluated by DPPH assay and the antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, and antifungal activity against Fusarium sp. and Aspergillus nigerwas studied by Agar well cut diffusion method. All of the extracts exhibited different antioxidant and antibacterial activities and the activities varied from solvent to solvent, and the activities are concentrated. The antioxidant and antimicrobial activities were compared with the positive control Ascorbic acid and Cefuroxime. A qualitative phytochemical analysis was carried out and found to possess bioactive compounds like alkaloids, glycosides, terpenoids, steroids, flavonoids, tannins.


2019 ◽  
Vol 25 (37) ◽  
pp. 4888-4902 ◽  
Author(s):  
Gilda D'Urso ◽  
Sonia Piacente ◽  
Cosimo Pizza ◽  
Paola Montoro

The consumption of berry-type fruits has become very popular in recent years because of their positive effects on human health. Berries are in fact widely known for their health-promoting benefits, including prevention of chronic disease, cardiovascular disease and cancer. Berries are a rich source of bioactive metabolites, such as vitamins, minerals, and phenolic compounds, mainly anthocyanins. Numerous in vitro and in vivo studies recognized the health effects of berries and their function as bioactive modulators of various cell functions associated with oxidative stress. Plants have one of the largest metabolome databases, with over 1200 papers on plant metabolomics published only in the last decade. Mass spectrometry (MS) and NMR (Nuclear Magnetic Resonance) are the most important analytical technologies on which the emerging ''omics'' approaches are based. They may provide detection and quantization of thousands of biologically active metabolites from a tissue, working in a ''global'' or ''targeted'' manner, down to ultra-trace levels. In the present review, we highlighted the use of MS and NMR-based strategies and Multivariate Data Analysis for the valorization of berries known for their biological activities, important as food and often used in the preparation of nutraceutical formulations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Oluwakayode O. Odeja ◽  
Michael Gabriel Ibok ◽  
Ejike O. Okpala

Abstract Background Asparagus flagellaris leaves are ethnomedicinally used to treat syphilis, gonorrhea and other sexually transmitted diseases (STDs), with no reports on the volatile constituents. This study was aimed to quantitatively and qualitatively characterise the composition of essential oil, evaluates the free radical scavenging and antimicrobial capacity of the essential oil. Methods The essential oil was isolated by hydrodistillation method using all-glass Clevenger-type apparatus, while the identification and quantification of constituents were performed by gas chromatography-mass spectrometry (GC-MS) technique. The antioxidant activity on 2, 2-diphenyl-1-picrylhydrazyl (DPPH) was evaluated and the oil was also tested against 10 strains of microorganisms consisting of 6 bacteria: Escherichia coli, Salmonella typhi, Klebsiella pneumonia, Pseudomonas aeruginosa, Staphylococcus aureus and Bacillus subtilis and 4 fungi: Candida albicans, Penicillium notatum, Aspergillus niger and Rhizopus spp. using broth dilution and surface plate methods, respectively. Results A pale yellow essential oil with a characteristic scent was obtained, with a yield of 0.80% (w/w). A total of 28 compounds accounting for 97.41% of the total oil contents were identified. The oil was predominated by Thymol and its derivatives, accounting for 57.48%. The most abundance (% area) constituents of the essential oil were 5-Thymyl tiglate (18.49%), Thymyl-2-methyl butyrate (17.34%), Thymol hydroquinone dimethyl ether (10.52%), Thymol methyl ether (9.42%) and 5-Propyl-1, 3-benzodioxole (4.59%). The essential oil showed a significant free radical scavenging activity compared to the standard antioxidant drugs used in this study, with % inhibition varying from 88.06 ± 0.0001 to 93.05 ± 0.0006. The leaf essential oil exhibited antimicrobial activity on all the tested organisms at 500–125 μg/mL, with an 18–10 mm inhibitory zone. Conclusion The leaf essential oil of A. flagellaris contains notable chemical compounds responsible for its antioxidant and antimicrobial activities.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Wattana Panphut ◽  
Tanakwan Budsabun ◽  
Pakkakul Sangsuriya

Long pepper (Piper retrofractum Vahl) is a Thai medicinal herb which has been used as one of the common ingredients in variety of Thai foods. Here, we investigated antimicrobial activities of crude bioactive metabolites extracted from fruits of P. retrofractum against 10 pathogenic organisms (bacteria and yeast) causing opportunistic infections in human or animals including Bacillus subtilis ATCC6633, Staphylococcus aureus ATCC25923, Enterococcus faecalis ATCC2921, Escherichia coli ATCC25922, Klebsiella pneumonia TISTR1843, Pseudomonas aeruginosa ATCC741, Salmonella typhi (clinical isolate), Vibrio parahaemolyticus (XN98 and 5HP), and Candida albicans ATCC90020. The results of disk diffusion test showed that the extract from methanol solvent exhibited greater antibacterial activity than other solvents with inhibition zones ranging from 0.5 to 8.0 mm, respectively. Subsequently, minimal inhibition concentration (MIC) determined by the colorimetric assay confirmed that methanol extracts showed consistent results with disk diffusion method. In summary, in vitro assays suggest that methanol is the best solvent for extraction of bioactive metabolites from P. retrofractum fruits. This crude extract can inhibit the majority of human and animal pathogens. This opens up a potential use of pepper fruits in prevention of food-contaminating microorganisms.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Saundane Anand Raghunath ◽  
Kirankumar Nandibeoor Mathada

An efficient one pot condensation of naphthols (1), 2,5-disubstituted indole-3-carboxaldehydes (2), and secondary amines (3) has been achieved using dichloromethane as a solvent, stirring at room temperature. Some of the new [(disubstituted amino)(5-substituted 2-phenyl-1H-indol-3-yl)methyl]naphthalene-ols (4) derivatives were prepared in good yields. The significant features of this method are simple work-up procedure, inexpensive nontoxic solvent, shorter reaction times, and excellent product yields. The structures of newly synthesized compounds (4a–r) are confirmed by their elemental analysis, FTIR, 1H and 13C NMR, and mass spectral data. These compounds were screened for their in vitro antioxidant, antimicrobial, antitubercular, and anticancer activities. Among the synthesized compounds (4a–r), the compound 4e exhibited highest activity for radical scavenging and ferric ions reducing antioxidant power activities; compounds 4b, 4h, and 4k showed good metal chelating activity. Compounds 4n and 4q showed excellent antimicrobial activities with MIC value 08 µg/mL against tested strains. Compounds 4h, 4k, 4n, and 4q exhibited promising antitubercular activity with MIC value 12.5 µg/mL. Compounds 4k and 4q exhibited 100% cell lysis at concentration 10 µg/mL against MDA-MB-231 (human adenocarcinoma mammary gland) cell lines.


Sign in / Sign up

Export Citation Format

Share Document