scholarly journals METHODS OF THE ESTIMATED TWO-PARAMETER LINEAR REGRESSION MODELSFOR DIAGNOSIS OF BRONCHIAL ASTHMA SEVERITY IN CHILDREN

Author(s):  
PIHNASTYI OLEH MYKHAILOVYCH ◽  
KOZHYNA OLGA SERGEYEVNA

Objectives: Prognostication of bronchial asthma severity in children by means of two-parameter regression models building. Methods: A clinical study of 70 children with bronchial asthma diagnosis of 6 to 18 years old was done.142 factors were analyzed and a degree of relationship among them was revealed. Single-factor regression models were used during preliminary experimental data processing. Results: The correlation connection between the value observed and the factors under research was revealed. The method of two-parameter linear models with a fair accuracy was developed. Conclusion: The suggested method of approximate two-parameter linear regression models can be used for preliminary analysis of medical research data where the value observed depends on a big number of loosely connected factors.

2018 ◽  
Vol 34 (3) ◽  
pp. 323-334
Author(s):  
Nadya Mincheva ◽  
Mitko Lalev ◽  
Magdalena Oblakova ◽  
Pavlina Hristakieva

The prediction of chicks? weight before hatching is an important element of selection, aimed at improving the uniformity rate and productivity of birds. With this regards, our goal was to develop and evaluate optimum models for similar prediction in two White Plymouth Rock chickens lines - line L and line K on the basis of the incubation egg weight and egg geometry characteristics - egg maximum breadth (B), egg length (L), geometric mean diameter (Dg), egg volume (V), egg surface area (S). A total of 280 eggs (140 from each line) laid by 40-weekold hens were randomly selected. Mean arithmetic values, standard deviations and coefficients of variation of studied parameters were determined for each line. Correlation coefficients between the weight of hatchlings and predictors were the highest for egg weight, geometric mean diameter, volume and surface area of eggs (r=0.731-0.779 for line L; r=0.802-0.819 for line ?). Nine linear regression models were developed and their accuracy evaluated. The regression equations of hatchlings? weight vs egg length had the lowest coefficient of determination (0.175 for line K and 0.291 for line L), but when egg length and breadth entered the model together, its value increased significantly up to 0.541 and 0.665 for lines L and K, respectively. The weight of day-old chicks from line L could be predicted with higher accuracy with a model involving egg surface area apart egg weight (ChW=0.513EW+0.282S - 10.345; R2=0.620). In line ? a more accurate prognosis was attained by adding egg breadth as an additional predictor to the weight in the model (ChW=0.587EW+0.566? - 19.853; R2=0.692). The study demonstrated that multiple linear regression models were more precise that single linear models.


Author(s):  
Guojun Gan

A variable annuity is a popular life insurance product that comes with financial guarantees. Using Monte Carlo simulation to value a large variable annuity portfolio is extremely time-consuming. Metamodeling approaches have been proposed in the literature to speed up the valuation process. In metamodeling, a metamodel is first fitted to a small number of variable annuity contracts and then used to predict the values of all other contracts. However, metamodels that have been investigated in the literature are sophisticated predictive models. In this paper, we investigate the use of linear regression models with interaction effects for the valuation of large variable annuity portfolios. Our numerical results show that linear regression models with interactions are able to produce accurate predictions and can be useful additions to the toolbox of metamodels that insurance companies can use to speed up the valuation of large VA portfolios.


Risks ◽  
2018 ◽  
Vol 6 (3) ◽  
pp. 71 ◽  
Author(s):  
Guojun Gan

A variable annuity is a popular life insurance product that comes with financial guarantees. Using Monte Carlo simulation to value a large variable annuity portfolio is extremely time-consuming. Metamodeling approaches have been proposed in the literature to speed up the valuation process. In metamodeling, a metamodel is first fitted to a small number of variable annuity contracts and then used to predict the values of all other contracts. However, metamodels that have been investigated in the literature are sophisticated predictive models. In this paper, we investigate the use of linear regression models with interaction effects for the valuation of large variable annuity portfolios. Our numerical results show that linear regression models with interactions are able to produce accurate predictions and can be useful additions to the toolbox of metamodels that insurance companies can use to speed up the valuation of large VA portfolios.


2017 ◽  
Vol 9 (6) ◽  
pp. 106
Author(s):  
J.C.S. De Miranda

We present a methodology for estimating causal functional linear models using orthonormal tensor product expansions. More precisely, we estimate the functional parameters $\alpha$ and $\beta$ that appear in the causal functional linear regression model:$$\mathcal{Y}(s)=\alpha(s)+\int_a^b\beta(s,t)\mathcal{X}(t)\mathrm{d}t+\mathcal{E}(s),$$ where  $\mbox{supp } \beta \subset \mathfrak{T},$ and $\mathfrak{T}$ is the closed triangular region whose vertexes are $(a,a) , (b,a)$ and $(b,b).$ We assume we have an independent sample $\{ (\mathcal{Y}_k,\mathcal{X}_k) : 1\le k \le N, k\in \mathbb{N}\}$ of observations where the $\mathcal{X}_k $'s are functional covariates, the $\mathcal{Y}_k$'s are time order preserving functional responses and $\mathcal{E}_k,$ $1\le k \le N,$ is i.i.d. zero mean functional noise.


2011 ◽  
Vol 3 (6) ◽  
pp. 383-388
Author(s):  
Yazdan Naghdi ◽  
Mohadese Soltantooye .

Economists pay considerable attention to the influential factors on the economic growth in the framework of the growth models. In the same direction, the relationship between inflation and economic growth in Iran has been investigated during 1978-2008. First, an adjusted model has been designed based on (Barro) model and then the relationship between inflation and economic growth has been estimated using both ARDL and rolling linear regression models. The results derived from the both estimated models showed that the effect of inflation on economic growth is negative and Significance.


2019 ◽  
Vol 42.1 ◽  
pp. 7153-7161
Author(s):  
Argir Zhivondov ◽  
Neli Keranova ◽  
Svetla Pandova

The object of this study is nine genotypes of Cornus mas L.: Kazanlashki pear-shaped, Pancharevski cylindrical, Shumenski oblong, Yaltenski, Vratsa-Castel Sandryan, Atkov cornel-tree, Tsarigradski yellow and Yellow Hadjiiski, distributed in the territory of Bulgaria. The objective of the study is the analysis of the impacts between more important pomological indicators and their presentation through linear models. The impacts between weight, length and width of the fruit, length of the stem, weight, length and width of the stone more important pomological indicators were researched by applying correlation analysis. The proven dependencies were evaluated and modelled by linear regression models presenting the complex effect of the tested signs on the weight of the fruit. The length of the fruit (0.907), its width (0.746), and the length of the stem (0.605), the stone weight (0.755), its length (0.787) and its width (0.605) had positive effect on fruit weight. After a regression equation was worked out, it was found that 90% of the dispersion of the dependent variable could be explained by the alteration of the irrigation, soil cultivation, pruning, which are not the subject of this study.


2017 ◽  
Vol 6 (5) ◽  
pp. 140
Author(s):  
Theodosia Prodromou

Following recent scholarly interest in teaching informal linear regression models, this study looks at teachers’ reasoning about informal lines of best fit and their role in pedagogy. The case results presented in this journal paper provide insights into the reasoning used when developing a simple informal linear model to best fit the available data. This study also suggests potential in specific aspects of bidirectional modelling to help foster the development of robust knowledge of the logic of inference for those investigating and coordinating relations between models developed during modelling exercises and informal inferences based on these models. These insights can inform refinement of instructional practices using simple linear models to support students’ learning of statistical inference, both formal and informal.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Chioneso Marange ◽  
Yongsong Qin

The application of goodness-of-fit (GoF) tests in linear regression modeling is a common practice in applied statistical sciences. For instance, in simple linear regression the assumption of normality of residuals is always necessary to test before making any further inferences. The growing popularity of the use of powerful and efficient empirical likelihood ratio (ELR) based GoF tests in checking for departures from normality in various continuous distributions can be of great use in checking for distributional assumptions of residuals in linear models. Motivated by the attractive properties of the ELR based GoF tests the researchers conducted an extensive Type I error rate assessment as well as a Monte Carlo power comparison of selected ELR GoF tests with well-known existing tests against symmetric and asymmetric alternative OLS and BLUS residuals. Under the simulated scenarios, all the studied tests have good control of Type I error rates. The Monte Carlo experiments revealed the superiority of the ELR GoF tests under certain alternatives of both the OLS and BLUS residuals. Our findings also demonstrated the superiority of OLS over BLUS residuals when one is testing for normality in simple linear regression models. A real data study further revealed the applicability of the ELR based GoF tests in testing normality of residuals in linear regression models.


2018 ◽  
Vol 23 (1) ◽  
pp. 60-71
Author(s):  
Wigiyanti Masodah

Offering credit is the main activity of a Bank. There are some considerations when a bank offers credit, that includes Interest Rates, Inflation, and NPL. This study aims to find out the impact of Variable Interest Rates, Inflation variables and NPL variables on credit disbursed. The object in this study is state-owned banks. The method of analysis in this study uses multiple linear regression models. The results of the study have shown that Interest Rates and NPL gave some negative impacts on the given credit. Meanwhile, Inflation variable does not have a significant effect on credit given. Keywords: Interest Rate, Inflation, NPL, offered Credit.


Sign in / Sign up

Export Citation Format

Share Document