scholarly journals A bilayered tissue engineered in vitro model simulating the tooth periodontium

2021 ◽  
Vol 42 ◽  
pp. 232-245
Author(s):  
A Khadre ◽  
ELM Raif ◽  
S Junaid ◽  
OM Goudouri ◽  
W Refaat ◽  
...  

Due to the complexity of the structure of the tooth periodontium, regeneration of the full tooth attachment is not a trivial task. There is also a gap in models that can represent human tooth attachment in vitro and in vivo. The aim of this study was to develop a bilayered in vitro construct that simulated the tooth periodontal ligament and attached alveolar bone, for the purpose of tissue regeneration and investigation of physiological and orthodontic loading. Two types of materials were used to develop this construct: sol-gel 60S10Mg derived scaffold, representing the hard tissue component of the periodontium, and commercially available Geistlich Bio-Gide® collagen membrane, representing the soft tissue component of the tooth attachment. Each scaffold was dynamically seeded with human periodontal ligament cells (HPDLCs). Scaffolds were either cultured separately, or combined in a bilayered construct, for 2 weeks. Characterisation of the individual scaffolds and the bilayered constructs included biological characterisation (cell viability, scanning electron microscopy to confirm cell attachment, gene expression of periodontium regeneration markers), and mechanical characterisation of scaffolds and constructs. HPDLCs enjoyed a biocompatible 3-dimensional environment within the bilayered construct components. There was no drop in cellular gene expression in the bilayered construct, compared to the separate scaffolds.

Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1221
Author(s):  
Eun-Nam Kim ◽  
Tae-Young Kim ◽  
Eui Kyun Park ◽  
Jae-Young Kim ◽  
Gil-Saeng Jeong

Periodontitis is an infectious inflammatory disease of tissues around teeth that destroys connective tissues and is characterized by the loss of periodontal ligaments and alveolar bone. A new treatment strategy is needed owing to the limitations of the current surgical treatment method and the side effects of anti-inflammatory drugs. Therefore, here, we assessed whether Panax ginseng fruit extract (PGFE) is a new therapeutic agent for periodontitis in vitro and in vivo. According to the results, PGFE suppressed pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, and pro-inflammatory mediators such as inducible nitric oxide synthase and cyclooxygenase-2 through heme oxygenase-1 expression in human periodontal ligament cells stimulated with Porphyromonas gingivalis lipopolysaccharide (PG-LPS). In addition, the osteogenic induction of human periodontal ligament cells was inhibited by PG-LPS, and protein and mRNA levels of osteogenic markers such as alkaline phosphatase, collagen type 1 (COL1), osteopontin (OPN), and runt-related transcription factor 2 (RUNX2) were increased. The efficacy of PGFE for inhibiting periodontitis in vitro was demonstrated in a representative in vitro model of periodontitis induced by ligature and PG-LPS. Subsequently, hematoxylin and eosin staining and micro-computed tomography of the euthanized experimental animal model confirmed suppressed periodontal inflammation, which is an important strategy for treating periodontitis and for recovering the resulting alveolar bone loss. Therefore, PGFE is a potential, novel therapeutic agent for periodontal diseases.


2003 ◽  
Vol 82 (8) ◽  
pp. 646-651 ◽  
Author(s):  
I. Takahashi ◽  
M. Nishimura ◽  
K. Onodera ◽  
J.-W. Bae ◽  
H. Mitani ◽  
...  

Periodontal ligament tissue is remodeled on both the tension and compression sides of moving teeth during orthodontic tooth movement. The present study was designed to clarify the hypothesis that the expression of MMP-8 and MMP-13 mRNA is promoted during the remodeling of periodontal ligament tissue in orthodontic tooth movement. We used the in situ hybridization method and semi-quantitative reverse-transcription/polymerase chain-reaction analysis to elucidate the gene expression of MMP-8 and MMP-13 mRNA. Expression of MMP-8 and MMP-13 mRNA transiently increased on both the compression and tension sides during active tooth movement in vivo. The gene expression of MMP-8 and MMP-13 was induced by tension, while compression indirectly promoted the gene expression of MMP-8 and MMP-13 through soluble factors in vitro. Thus, we concluded that the expression of MMP-8 and MMP-13 is differentially regulated by tension and compression, and plays an important role in the remodeling of the periodontal ligament.


2005 ◽  
Vol 84 (10) ◽  
pp. 902-906 ◽  
Author(s):  
A. Kawarizadeh ◽  
C. Bourauel ◽  
W. Götz ◽  
A. Jäger

Previous studies have indicated that human periodontal ligament cells undergo osteoblastic differentiation via the ERK pathway under mechanical stress in vitro. This study aimed to verify this principle in vivo. The right upper first molars of 25 anesthetized rats were loaded with constant forces of 0.1 N for up to 8 hrs. The untreated contralateral side served as a control. Paraffin-embedded sections were analyzed by immunohistochemistry for proliferating cell nuclear antigen (PCNA), runt-related transcription factor 2 (Runx2/Cbfa1), and phosphorylated extracellular signal-regulated kinases 1/2 (pERK1/2). In selected areas under tension, the proportions of Runx2-positive and pERK1/2-positive cells increased within 8 hrs of loading, whereas these proportions in selected areas under pressure were significantly lower than those in control teeth. Moreover, there were no significant changes in the number of PCNA-positive cells. Thus, mechanical stimulus up-regulates Runx2, and this regulation may be achieved via the ERK pathway.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jittima Pumklin ◽  
Jeeranan Manokawinchoke ◽  
Kanokporn Bhalang ◽  
Prasit Pavasant

Mechanical force was shown to promote IGF-1 expression in periodontal ligament both in vitro and in vivo. Though the mechanism of this effect has not yet been proved, here we investigated the molecular mechanism of intermittent mechanical stress on IGF-1 expression. In addition, the role of hypoxia on the intermittent compressive stress on IGF-1 expression was also examined. In this study, human periodontal ligament cells (HPDLs) were stimulated with intermittent mechanical stress for 24 hours. IGF-1 expression was examined by real-time polymerase chain reaction. Chemical inhibitors were used to determine molecular mechanisms of these effects. For hypoxic mimic condition, the CoCl2 supplementation was employed. The results showed that intermittent mechanical stress dramatically increased IGF-1 expression at 24 h. The pretreatment with TGF-β receptor I or TGF-β1 antibody could inhibit the intermittent mechanical stress-induced IGF-1 expression. Moreover, the upregulation of TGF-β1 proteins was detected in intermittent mechanical stress treated group. Correspondingly, the IGF-1 expression was upregulated upon being treated with recombinant human TGF-β1. Further, the hypoxic mimic condition attenuated the intermittent mechanical stress and rhTGF-β1-induced IGF-1 expression. In summary, this study suggests intermittent mechanical stress-induced IGF-1 expression in HPDLs through TGF-β1 and this phenomenon could be inhibited in hypoxic mimic condition.


2001 ◽  
Vol 36 (2) ◽  
pp. 71-79 ◽  
Author(s):  
P. Lekic ◽  
J. Rojas ◽  
C. Birek ◽  
H. Tenenbaum ◽  
C. A. G. McCulloch

2019 ◽  
Vol 20 (19) ◽  
pp. 4883 ◽  
Author(s):  
Teerawat Sukpaita ◽  
Suwabun Chirachanchai ◽  
Pornchanok Suwattanachai ◽  
Vincent Everts ◽  
Atiphan Pimkhaokham ◽  
...  

Chitosan/dicarboxylic acid (CS/DA) scaffold has been developed as a bone tissue engineering material. This study evaluated a CS/DA scaffold with and without seeded primary human periodontal ligament cells (hPDLCs) in its capacity to regenerate bone in calvarial defects of mice. The osteogenic differentiation of hPDLCs was analyzed by bone nodule formation and gene expression. In vivo bone regeneration was analyzed in mice calvarial defects. Eighteen mice were divided into 3 groups: one group with empty defects, one group with defects with CS/DA scaffold, and a group with defects with CS/DA scaffold and with hPDLCs. After 6 and 12 weeks, new bone formation was assessed using microcomputed tomography (Micro-CT) and histology. CS/DA scaffold significantly promoted in vitro osteoblast-related gene expression (RUNX2, OSX, COL1, ALP, and OPN) by hPDLCs. Micro-CT revealed that CS/DA scaffolds significantly promoted in vivo bone regeneration both after 6 and 12 weeks (p < 0.05). Histological examination confirmed these findings. New bone formation was observed in defects with CS/DA scaffold; being similar with and without hPDLCs. CS/DA scaffolds can be used as a bone regenerative material with good osteoinductive/osteoconductive properties.


Sign in / Sign up

Export Citation Format

Share Document