International Journal of Cell Biology
Latest Publications


TOTAL DOCUMENTS

306
(FIVE YEARS 10)

H-INDEX

48
(FIVE YEARS 3)

Published By Hindawi Limited

1687-8884, 1687-8876

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Manoj J. Mammen ◽  
Jamil Ali ◽  
Amita Aurora ◽  
Umesh C. Sharma ◽  
Ravikumar Aalinkeel ◽  
...  

Mucus hypersecretion and chronic airway inflammation are standard characteristics of several airway diseases, such as chronic obstructive pulmonary disease and asthma. Increased mucus secretion from increased mucin gene expression in the airway epithelium is associated with poor prognosis and mortality. We previously showed that the absence of tissue inhibitor of metalloproteinase 1 (TIMP-1) enhances lung inflammation, airway hyperreactivity, and lung remodeling in asthma in an ovalbumin (OVA) asthma model of TIMP-1 knockout (TIMPKO) mice as compared to wild-type (WT) controls and mediated by increased galectin-3 (Gal-3) levels. Additionally, we have shown that in the lung epithelial cell line A549, Gal-3 inhibition increases interleukin-17 (IL-17) levels, leading to increased mucin expression in the airway epithelium. Therefore, in the current study, we further examined the relationship between Gal-3 and the production of IL-17-axis cytokines and critical members of the mucin family in the murine TIMPKO asthma model and the lung epithelium cell line A549. While Gal-3 may regulate a Th1/Th2 response, IL-17 could stimulate the mucin genes, MUC5B and MUC5AC. Gal-3 and IL-17 interactions induce mucus expression in OVA-sensitized mice. We conclude that Gal-3 may play an essential role in the pathogenesis of asthma, and modulation of Gal-3 may prove helpful in the treatment of this disease.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Anisha Polley ◽  
Riffat Khanam ◽  
Arunima Sengupta ◽  
Santanu Chakraborty

Worldwide, calcific aortic valve disease is one of the leading causes of morbidity and mortality among patients with cardiac abnormalities. Aortic valve mineralization and calcification are the key events of adult calcific aortic valve disease manifestation and functional insufficiency. Due to heavy mineralization and calcification, adult aortic valvular cusps show disorganized and dispersed stratification concomitant with deposition of calcific nodules with severely compromised adult valve function. Interestingly, shared gene regulatory pathways are identified between bone-forming cells and heart valve cells during development. Asporin, a small leucine-rich proteoglycan (43 kDa), acts to inhibit mineralization in periodontal ligament cells and is also detected in normal murine adult aortic valve leaflets with unknown function. Therefore, to understand the Asporin function in aortic cusp mineralization and calcification, adult avian aortic valvular interstitial cell culture system is established and osteogenesis has been induced in these cells successfully. Upon induction of osteogenesis, reduced expression of Asporin mRNA and increased expression of bone and osteogenesis markers are detected compared to cells maintained without osteogenic induction. Importantly, treatment with human recombinant Asporin protein reduces the mineralization level in osteogenic media-induced aortic valvular interstitial cells with the concomitant decreased level of Wnt/β-catenin signaling. Overall, all these data are highly indicative that Asporin might be a novel biomolecular target to treat patients of calcific aortic valve disease over current cusp replacement surgery.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fangfang Bi ◽  
Wenbo Liu ◽  
Zongtao Wu ◽  
Chen Ji ◽  
Cuicui Chang

Antiaging protein Klotho exhibits impressive properties of anti-inflammation, however is declined early after intervertebral disc injury, making Klotho restoration an attractive strategy of treating intervertebral disc inflammatory disorders. Here, we have found that Klotho is enriched in nucleus pulposus (NP) cells and Klotho overexpression attenuates H2O2-induced acute inflammation essentially via suppressing Toll-like receptor 4 (TLR4). The proinflammatory NF-κB signaling and cytokine expressions paralleled with Klotho repression and TLR4 elevation in both NP cells (H2O2 treatment) and rat intervertebral disc (needle puncture treatment). Overexpression of TLR4 downregulated expression of Klotho, whereas interfering TLR4 expression diminished the inhibitory effects of H2O2 on Klotho in NP cells. Consistently, Klotho knockdown by RNA interferences largely diminished the anti-inflammatory and intervertebral disc protective effects in an Intervertebral Disc Degeneration (IDD) model. Thus, our study indicates that TLR4-NF-κB signaling and Klotho form a negative-feedback loop in NP cells. Also, we demonstrate that the expression of Klotho is regulated by the balance between upregulation and downregulation of TLR4-NF-κB signaling.


2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Rui D. Alvites ◽  
Mariana V. Branquinho ◽  
Ana R. Caseiro ◽  
Irina Amorim ◽  
Sílvia Santos Pedrosa ◽  
...  

Stem/stromal cell-based therapies are a branch of regenerative medicine and stand as an attractive option to promote the repair of damaged or dysfunctional tissues and organs. Olfactory mucosa mesenchymal stem/stromal cells have been regarded as a promising tool in regenerative therapies because of their several favorable properties such as multipotency, high proliferation rate, helpful location, and few associated ethical issues. These cells are easily accessible in the nasal cavity of most mammals, including the rat, can be easily applied in autologous treatments, and do not cope with most of the obstacles associated with the use of other stem cells. Despite this, its application in preclinical trials and in both human and animal patients is still limited because of the small number of studies performed so far and to the nonexistence of a standard and unambiguous protocol for collection, isolation, and therapeutic application. In the present work a validation of a protocol for isolation, culture, expansion, freezing, and thawing of olfactory mucosa mesenchymal stem/stromal cells was performed, applied to the rat model, as well as a biological characterization of these cells. To investigate the therapeutic potential of OM-MSCs and their eventual safe application in preclinical trials, the main characteristics of OMSC stemness were addressed.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Anna Z. Urbisz ◽  
Sebastian Student ◽  
Małgorzata A. Śliwińska ◽  
Karol Małota

Mitochondria change their morphology and distribution depending on the metabolism and functional state of a cell. Here, we analyzed the mitochondria and selected structures in female germ-line cysts in a representative of clitellate annelids – the white worm Enchytraeus albidus in which each germ cell has one cytoplasmic bridge that connects it to a common cytoplasmic mass. Using serial block-face scanning electron microscopy (SBEM), we prepared three-dimensional ultrastructural reconstructions of the entire selected compartments of a cyst at the advanced stage of oogenesis, i.e. the nurse cell, cytophore, and cytoplasmic bridges of all 16 cells (15 nurse cells and oocyte). We revealed extensive mitochondrial networks in the nurse cells, cytophore and mitochondria that pass through the cytoplasmic bridges, which indicates that a mitochondrial network can extend throughout the entire cyst. The dynamic hyperfusion state was suggested for such mitochondrial aggregations. We measured the mitochondria distribution and revealed their polarized distribution in the nurse cells and more abundant accumulation within the cytophore compared to the nurse cell. A close association of mitochondrial networks with dispersed nuage material, which seems to be the structural equivalent of a Balbiani body, not described in clitellate annelids so far, was also revealed.


2019 ◽  
Vol 2019 ◽  
pp. 1-1
Author(s):  
Syed Ahmad Tajudin T-Johari ◽  
Fatimah Hashim ◽  
Wan Iryani W. Ismail ◽  
Abdul Manaf Ali

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Aurore Devocelle ◽  
Lola Lecru ◽  
Hélène François ◽  
Christophe Desterke ◽  
Cindy Gallerne ◽  
...  

Renal tubulointerstitial fibrosis is the final common pathway in end-stage renal disease and is characterized by aberrant accumulation of extracellular matrix (ECM) components secreted by myofibroblasts. Tubular type 2 EMT, induced by TGF-β, plays an important role in renal fibrosis, by participating directly or indirectly in myofibroblasts generation. TGF-β1-induced apoptosis and fibrosis in experimental chronic murine kidney diseases are concomitantly associated with an intrarenal decreased expression of the IL-15 survival factor. Since IL-15 counteracts TGF-β1 effects in different cell models, we analyzed whether (1) human chronic inflammatory nephropathies evolving towards fibrosis could be also characterized by a weak intrarenal IL-15 expression and (2) IL-15 could inhibit epithelial-mesenchymal transition (EMT) and excess matrix deposition in human renal proximal tubular epithelial cells (RPTEC). Our data show that different human chronic kidney diseases are characterized by a strong decreased expression of intrarenal IL-15, which is particularly relevant in diabetic nephropathy, in which type 2 tubular EMT plays an important role in fibrosis. Moreover, primary epithelial tubular cultures deprived of growth supplements rapidly produce active TGF-β1 inducing a “spontaneous” EMT process characterized by the loss of membrane-bound IL-15 (mbIL-15) expression. Both “spontaneous” EMT and recombinant human (rh) TGF-β1-induced EMT models can be inhibited by treating RPTEC and HK2 cells with rhIL-15. Through a long-lasting phospho-c-jun activation, IL-15 inhibits rhTGF-β1-induced Snail1 expression, the master inducer of EMT, and blocks TGF-β1-induced tubular EMT and downstream collagen synthesis. In conclusion, our data suggest that intrarenal IL-15 could be a natural inhibitor of TGF-β in human kidney able to guarantee epithelial homeostasis and to prevent EMT process. Thus, both in vivo and in vitro an unbalance in intrarenal IL-15 and TGF-β1 levels could render RPTEC cells more prone to undergo EMT process. Exogenous IL-15 treatment could be beneficial in some human nephropathies such as diabetic nephropathy.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Sunipa Majumdar ◽  
Aniket S. Wadajkar ◽  
Hanan Aljohani ◽  
Mark A. Reynolds ◽  
Anthony J. Kim ◽  
...  

We have recently demonstrated that a small molecular weight amino-terminal peptide of L-plastin (10 amino acids; “MARGSVSDEE”) suppressed the phosphorylation of endogenous L-plastin. Therefore, the formation of nascent sealing zones (NSZs) and bone resorption are reduced. The aim of this study was to develop a biodegradable and biocompatible PLGA nanocarrier that could be loaded with the L-plastin peptide of interest and determine the efficacy in vitro in osteoclast cultures. L-plastin MARGSVSDEE (P1) and scrambled control (P3) peptide-loaded PLGA-PEG nanoparticles (NP1 and NP3, respectively) were synthesized by double emulsion technique. The biological effect of nanoparticles on osteoclasts was evaluated by immunoprecipitation, immunoblotting, rhodamine-phalloidin staining of actin filaments, and pit forming assays. Physical characterization of well-dispersed NP1 and NP3 demonstrated ~130-150 nm size, < 0.07 polydispersity index, ~-3 mV ζ-potential, and a sustained release of the peptide for three weeks. Biological characterization in osteoclast cultures demonstrated the following: NP1 significantly reduced (a) endogenous L-plastin phosphorylation; (b) formation of NSZs and sealing rings; (c) resorption. However, the assembly of podosomes which are critical for cell adhesion was not affected. L-plastin peptide-loaded PLGA-PEG nanocarriers have promising potential for the treatment of diseases associated with bone loss. Future studies will use this sustained release of peptide strategy to systematically suppress osteoclast bone resorption activity in vivo in mouse models demonstrating bone loss.


2019 ◽  
Vol 2019 ◽  
pp. 1-1
Author(s):  
Kapil Sethi ◽  
Kenny Rao ◽  
Arthur Shulkes ◽  
Graham Baldwin ◽  
Damien Bolton ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Syed Ahmad Tajudin T-Johari ◽  
Fatimah Hashim ◽  
Wan Iryani Ismail ◽  
Abdul Manaf Ali

Combination of natural products with chemodrugs is becoming a trend in discovering new therapeutics approach for enhancing the cancer treatment process. In the present study, we aimed to investigate the cytotoxic and apoptosis induction of Gelam honey (GH) combined with or without 5-Fluorouracil (5-FU) on HT-29 cells. The cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay to assess cytotoxicity. Morphological changes and apoptosis were determined by the inverted microscope, Annexin V-FITC, and DNA fragmentation via flow cytometric analysis, respectively. Our results demonstrate that combined treatment revealed a remarkable and concentration-dependent cytotoxic effect on HT-29 cells in comparison with GH and 5-FU alone. Flow cytometry analysis showed that early apoptosis event was more pronounced in combined treatment. In addition, compared to 5-FU alone, apoptosis of HT-29 cells treated with combinations of GH and 5-FU demonstrated increasing percentages of fragmented DNA. Our results suggest that GH has a synergistic cytotoxic effect with 5-FU in HT-29 cell lines in vitro. Although the actions of the molecular mechanisms are not yet clear, the results reveal that the combination of GH and 5-FU could have the potential as a therapeutic agent.


Sign in / Sign up

Export Citation Format

Share Document