Some Results on Common Fixed Point Theorems in Hilbert Space

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
N. Seshagiri Rao
Author(s):  
Jagdish C. Chaudhary ◽  
Shailesh T. Patel

In this paper, we prove some common fixed point theorems in complete metric spaces for self mapping satisfying a contractive condition of Integral  type.


2018 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
KUMAR DAS APURVA ◽  
DHAR DIWAN SHAILESH ◽  
JAIN SWATI ◽  
◽  
◽  
...  

2017 ◽  
Vol 37 (1) ◽  
pp. 9-20
Author(s):  
Manoj Kumar ◽  
Serkan Araci

Samet et. al. (Nonlinear Anal. 75, 2012, 2154-2165) introduced the concept of alpha-psi-contractive type mappings in metric spaces. In 2013, Alghamdi et. al. [2] introduced the concept of G-β--contractive type mappings in G-metric spaces. Our aim is to introduce new concept of generalized G-η-χ-contractive pair of mappings. Further, we study some fixed point theorems for such mappings in complete G-metric spaces. As an application, we further establish common fixed point theorems for G-metric spaces for cyclic contractive mappings.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Ghorban Khalilzadeh Ranjbar ◽  
Mohammad Esmael Samei

Abstract The aim of this work is to usher in tripled b-metric spaces, triple weakly $\alpha _{s}$ α s -admissible, triangular partially triple weakly $\alpha _{s}$ α s -admissible and their properties for the first time. Also, we prove some theorems about coincidence and common fixed point for six self-mappings. On the other hand, we present a new model, talk over an application of our results to establish the existence of common solution of the system of Volterra-type integral equations in a triple b-metric space. Also, we give some example to illustrate our theorems in the section of main results. Finally, we show an application of primary results.


Sign in / Sign up

Export Citation Format

Share Document