scholarly journals Optimized Adjustment of Single Action-potentials to Case-specific Atrial Physiology: Towards Clinical Implementation

Author(s):  
Pedro Lind ◽  
Yvonne Richter ◽  
Gunnar Seemann ◽  
Claudia Lenk ◽  
Philipp Maass
2005 ◽  
Vol 94 (6) ◽  
pp. 4430-4440 ◽  
Author(s):  
Sofija Andjelic ◽  
Vincent Torre

Calcium dynamics in leech neurons were studied using a fast CCD camera. Fluorescence changes (Δ F/ F) of the membrane impermeable calcium indicator Oregon Green were measured. The dye was pressure injected into the soma of neurons under investigation. Δ F/ F caused by a single action potential (AP) in mechanosensory neurons had approximately the same amplitude and time course in the soma and in distal processes. By contrast, in other neurons such as the Anterior Pagoda neuron, the Annulus Erector motoneuron, the L motoneuron, and other motoneurons, APs evoked by passing depolarizing current in the soma produced much larger fluorescence changes in distal processes than in the soma. When APs were evoked by stimulating one distal axon through the root, Δ F/ F was large in all distal processes but very small in the soma. Our results show a clear compartmentalization of calcium dynamics in most leech neurons in which the soma does not give propagating action potentials. In such cells, the soma, while not excitable, can affect information processing by modulating the sites of origin and conduction of AP propagation in distal excitable processes.


1979 ◽  
Vol 78 (1) ◽  
pp. 121-136
Author(s):  
GERALD E. SILVEY ◽  
IAN S. WILSON

The syncarid crustacean Anaspides tasmaniae rapidly flexes its free thoracic and abdominal segments in response to tactile stimulation of its body. This response decrements but recovers in slightly more than one hour. The fast flexion is evoked by single action potentials in the lateral of two large diameter fibres (40 μm) which lie on either side of the cord. The lateral giant fibre is made up of fused axons of 11 neurones, one in each of the last 5 thoracic and 6 abdominal ganglia. The soma of each neurone lies contralateral to the axon. Its neurite crosses that of its counterpart in the commissure and gives out dendrites into the neuropile of each hemiganglion. The lateral giant neurone receives input from the whole body but fires in response only to input from the fourth thoracic segment posteriorly. Both fibres respond with tactile stimulation of only one side. Since neither current nor action potentials spread from one fibre to the other, afferents must synapse with both giant neurones. The close morphological and physiological similarities of the lateral giant neurone in Anaspides to that in the crayfish (Eucarida) suggest that the lateral giant system arose in the ancestor common to syncarids and eucarids, prior to the Carboniferous.


1991 ◽  
Vol 66 (3) ◽  
pp. 744-761 ◽  
Author(s):  
S. M. Johnson ◽  
P. A. Getting

1. The purpose of this study was to determine the electrophysiological properties of neurons within the region of the nucleus ambiguus (NA), an area that contains the ventral respiratory group. By the use of an in vitro brain stem slice preparation, intracellular recordings from neurons in this region (to be referred to as NA neurons, n = 235) revealed the following properties: postinhibitory rebound (PIR), delayed excitation (DE), adaptation, and posttetanic hyperpolarization (PTH). NA neurons were separated into three groups on the basis of their expression of PIR and DE: PIR cells (58%), DE cells (31%), and Non cells (10%). Non cells expressed neither PIR nor DE and no cells expressed both PIR and DE. 2. PIR was a transient depolarization that produced a single action potential or a burst of action potentials when the cell was released from hyperpolarization. In the presence of tetrodotoxin (TTX), the maximum magnitude of PIR was 7-12 mV. Under voltage-clamp conditions, hyperpolarizing voltage steps elicited a small inward current during the hyperpolarization and a small inward tail current on release from hyperpolarization. These currents, which mediate PIR, were most likely due to Q-current because they were blocked with extracellular cesium and were insensitive to barium. 3. DE was a delay in the onset of action potential firing when cells were hyperpolarized before application of depolarizing current. When cells were hyperpolarized to -90 mV for greater than or equal to 300 ms, maximum delays ranged from 150 to 450 ms. The transient outward current underlying DE was presumed to be A-current because of the current's activation and inactivation characteristics and its elimination by 4-aminopyridine (4-AP). 4. Adaptation was examined by applying depolarizing current for 2.0 s and measuring the frequency of evoked action potentials. Although there was a large degree of variability in the degree of adaptation, PIR cells tended to express less adaptation than DE and Non cells. Nearly three-fourths of all NA neurons adapted rapidly (i.e., 50% adaptation in less than 200 ms), but PIR cells tended to adapt faster than DE and Non cells. PTH after a train of action potentials was relatively rare and occurred more often in DE cells (43%) and Non cells (33%) than in PIR cells (13%). PTH had a magnitude of up to 18 mV and time constants that reflected the presence of one (1.7 +/- 1.4 s, mean +/- SD) or two components (0.28 +/- 0.13 and 4.1 +/- 2.2 s).(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Leonard K. Kaczmarek

The intrinsic electrical properties of neurons are extremely varied. For example, the width of action potentials in different neurons varies by more than an order of magnitude. In response to prolonged stimulation, some neurons generate repeated action potential hundreds of times a second, while others fire only a single action potential or adapt very rapidly. These differences result from the expression of different types of ion channels in the plasma membrane. The dominant channels that shape neuronal firing patterns are those that are selective for sodium, calcium, and potassium ions. This chapter provides a brief overview of the biophysical properties of each of these classes of channel, their role in shaping the electrical personality of a neuron, and how interactions of these channels with cytoplasmic factors shape the overall cell biology of a neuron.


1996 ◽  
Vol 76 (2) ◽  
pp. 788-798 ◽  
Author(s):  
M. Wildman ◽  
A. Cannone

1. An interaction exists between two proprioceptive afferent neurons innervating the thoracic-coxal muscle receptor organ (TCMRO) of the crab, Carcinus maenas. Intracellular recordings were made from the extraganglionic regions of the afferents in order to characterize this interaction and its effects on sensory feedback. 2. A current-induced depolarization of the nonspiking T fiber of the TCMRO results in a depolarization of the P fiber, a small-diameter (7 microns) neuron innervating the same receptor. This interaction is graded in amplitude, and may result in a single action potential being superimposed on the graded response of the P fiber. A hyperpolarization of the T fiber has a smaller effect on the P fiber than a depolarization of similar amplitude. The interaction is rectified in a T- to P-fiber direction, and has a minimum central delay of approximately 3.6 ms. 3. The site of the interaction between the afferents is situated centrally, within the thoracic ganglion. Action potentials evoked in the P fiber by a T-fiber depolarization propagate actively and antidromically to the periphery. 4. Central modulation of the interaction occurs, because the amplitude of a T-fiber-induced depolarization is reduced in the P fiber during centrally generated spontaneous bursts of activity in the motoneurons of basal leg muscles. 5. Because of the interaction between T and P fibers, action potentials recorded from the peripheral portion of the P fiber during receptor stretch may be either orthodromic, resulting directly from the effects of the stretch on the sensory endings of the P fiber, or antidromic, resulting from the central input from the T fiber. 6. The T- to P-fiber interaction may serve to extend the dynamic sensitivity range of the P fiber, in particular by amplifying its sensory response at short receptor lengths and low velocities of stretch.


1998 ◽  
Vol 79 (4) ◽  
pp. 1746-1754 ◽  
Author(s):  
Andreas Scholz ◽  
Noboru Kuboyama ◽  
Gunter Hempelmann ◽  
Werner Vogel

Scholz, Andreas, Noboru Kuboyama, Gunter Hempelmann, and Werner Vogel. Complex blockade of TTX-resistant Na+ currents by lidocaine and bupivacaine reduce firing frequency in DRG neurons. J. Neurophysiol. 79: 1746–1754, 1998. Mechanisms of blockade of tetrodotoxin-resistant (TTXr) Na+ channels by local anesthetics in comparison with the sensitivity of tetrodotoxin-sensitive (TTXs) Na+ channels were studied by means of the patch-clamp technique in neurons of dorsal root ganglions (DRG) of rat. Half-maximum inhibitory concentration (IC50) for the tonic block of TTXr Na+ currents by lidocaine was 210 μmol/l, whereas TTXs Na+ currents showed five times lower IC50 of 42 μmol/l. Bupivacaine blocked TTXr and TTXs Na+ currents more potently with IC50 of 32 and 13 μmol/l, respectively. In the inactivated state, TTXr Na+ channel block by lidocaine showed higher sensitivities (IC50 = 60 μmol/l) than in the resting state underlying tonic blockade. The time constant τ1 of recovery of TTXr Na+ channels from inactivation at −80 mV was slowed from 2 to 5 ms after addition of 10 μmol/l bupivacaine, whereas the τ2 value of ∼500 ms remained unchanged. The use-dependent block of TTXr Na+ channels led to a progressive reduction of current amplitudes with increasing frequency of stimulation, which was ≤53% block at 20 Hz in 10 μmol/l bupivacaine and 81% in 100 μmol lidocaine. The functional importance of the use-dependent block was confirmed in current-clamp experiments where 30 μmol/l of lidocaine or bupivacaine did not suppress the single action potential but clearly reduced the firing frequency of action potentials again with stronger potency of bupivacaine. Because it was found that TTXr Na+ channels predominantly occur in smaller sensory neurons, their blockade might underlie the suppression of the sensation of pain. Different sensitivities and varying proportions of TTXr and TTXs Na+ channels could explain the known differential block in spinal anesthesia. We suggest that the frequency reduction at low local anesthetic concentrations may explain the phenomenon of paresthesia where sensory information are suppressed gradually during spinal anesthesia.


1997 ◽  
Vol 499 (2) ◽  
pp. 315-328 ◽  
Author(s):  
A S Cohen ◽  
K A Moore ◽  
R Bangalore ◽  
M S Jafri ◽  
D Weinreich ◽  
...  

2003 ◽  
Vol 285 (6) ◽  
pp. C1464-C1474 ◽  
Author(s):  
B. Gong ◽  
D. Legault ◽  
T. Miki ◽  
S. Seino ◽  
J. M. Renaud

Although ATP-sensitive K+ (KATP) channel openers depress force, channel blockers have no effect. Furthermore, the effects of channel openers on single action potentials are quite small. These facts raise questions as to whether 1) channel openers reduce force via an activation of KATP channels or via some nonspecific effects and 2) the reduction in force by KATP channels operates by changes in amplitude and duration of the action potential. To answer the first question we tested the hypothesis that pinacidil, a channel opener, does not affect force during fatigue in muscles of Kir6.2-/- mice that have no cell membrane KATP channel activity. When wild-type extensor digitorum longus (EDL) and soleus muscles were stimulated to fatigue with one tetanus per second, pinacidil increased the rate at which force decreased, prevented a rise in resting tension, and improved force recovery. Pinacidil had none of these effects in Kir6.2-/- muscles. To answer the second question, we tested the hypothesis that the effects of KATP channels on membrane excitability are greater during action potential trains than on single action potentials, especially during metabolic stress such as fatigue. During fatigue, M wave areas of control soleus remained constant for 90 s, suggesting no change in action potential amplitude for half of the fatigue period. In the presence of pinacidil, the decrease in M wave areas became significant within 30 s, during which time the rate of fatigue also became significantly faster compared with control muscles. It is therefore concluded that, once activated, KATP channels depress force and that this depression involves a reduction in action potential amplitude.


1994 ◽  
Vol 71 (6) ◽  
pp. 2217-2235 ◽  
Author(s):  
S. Williams ◽  
D. D. Samulack ◽  
C. Beaulieu ◽  
J. C. LaCaille

1. The membrane properties and synaptic inputs of interneurons, located at the stratum (s.) lacunosum-moleculare and radiatum border (L-M) of the CA1 region, were examined with the use of current-clamp whole-cell recordings in rat hippocampal slices. 2. Biocytin-labeled L-M interneurons had nonpyramidal somata and aspinous, often beaded, dendrites that arborized in s. lacunosum-moleculare and radiatum, sometimes as far as s. moleculare of the dentate gyrus. Their axon coursed and branched in s. lacunosum-moleculare and radiatum. Axon collaterals were also observed traversing the hippocampal fissure and arborizing in s. moleculare of the dentate gyrus and s. radiatum of the CA3 region. 3. Several membrane properties of interneurons were typically nonpyramidal: they had large input resistances, short-duration action potentials followed by prominent fast afterhyperpolarizations, and responded to hyperpolarizing current pulses with little membrane rectification. L-M interneurons showed significant anodal break responses, and their mean membrane time constant was 33 ms. After-depolarizations elicited by subthreshold depolarizing current pulses were larger in amplitude and decayed more slowly at depolarized than hyperpolarized membrane potentials. 4. The majority of L-M interneurons (35 of 49 cells) were silent at resting membrane potentials, whereas other displayed either spontaneous single action potentials (n = 12) or rhythmic bursts (n = 2). The rhythmic bursts were insensitive to the N-methyl-D-aspartate (NMDA) and non-NMDA excitatory amino acid receptor antagonists, 2-amino-5-phosphonopentanoic acid (AP-5; 50 microM) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 20 microM), respectively. Both spontaneous single action potentials and burst firing were blocked by membrane hyperpolarization, suggesting that they were intrinsically rather than synaptically generated. 5. L-M interneurons responded with regular sustained firing to depolarizing current pulses at resting membrane potential. However, at more hyperpolarized membrane potentials (near -75 mV), depolarizing current pulses elicited action-potential firing with a delayed onset. This suggests that voltage-sensitive, transient outward currents may be activated in L-M interneurons from hyperpolarized membrane potentials. 6. Electrical stimulation of s. radiatum or lacunosum-moleculare elicited predominantly long-duration excitatory postsynaptic potentials (EPSPs; n = 20 cells), or both EPSPs and inhibitory postsynaptic potentials (IPSPs; n = 17 cells). In most L-M interneurons (35/37), with increasing intensities, up to two action potentials were elicited. Occasionally, larger bursts (3–5 action potentials) were observed (n = 2). 7. The multiphasic components of the synaptic responses became more evident when stimulations were repeated at different membrane potentials.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document