scholarly journals The The impact of Cirebon coal-fired power plants on water quality in Mundu Bay, Cirebon Regency

2020 ◽  
Vol 4 (3) ◽  
pp. 189-204
Author(s):  
Millary Agung Widiawaty ◽  
Nurhanifah Nurhanifah ◽  
Arif Ismail ◽  
Moh. Dede

The presence of Cirebon coal-fired power plant I and II caused negative effects to coastal morphology and the quality of marine waters. This also have negative impacts to the fisherman around that sea. This study aims to examine the impact of the Cirebon coal-fired power plant on the water quality of Mundu Bay, Cirebon Regency. Water quality is determined based on total suspended solids (TSS), sea surface temperatures (SST), chlorophyll-A, and salinity in the range 1999 – 2019. Data collection was carried out using satellite imagery of Landsat-5 TM, Landsat- 7 ETM+, and Landsat-8 OLI verified with in-situ field measurements, Sentinel-2 A MSI, and MODIS Aqua imageries. Changes in water quality due to the infrastructure of the two power plants are known through the Mann-Whitney U-Test and Spearman’s correlation analysis. This research shows that two Cirebon coal-fired power plant has a significant effect on changes in the quality of Mundu Bay waters. Changes in water quality are shown by a significant increase in TSS concentrations and SST values ​​accompanied by a decrease in chlorophyll-A levels and salinity levels. Changes in the quality of these waters also disrupt marine biota habitat and cause fishermen in around are difficult to get the ideal catchment yield.

2019 ◽  
Vol 19 (7) ◽  
pp. 2021-2027 ◽  
Author(s):  
María Micaela Ledesma ◽  
Matías Bonansea ◽  
Claudia Rosa Ledesma ◽  
Claudia Rodríguez ◽  
Joel Carreño ◽  
...  

Abstract The physico-chemical and biological composition of a reservoir's effluents directly influences water quality. The values of variables such as high values of concentrations of chlorophyll-a (Chl-a) are indicators of pollution. The objective of this work was to monitor the trophic status and water quality of the Cassaffousth reservoir (Córdoba, Argentina) through the development of statistical models based on field data and satellite information. During 2016 and 2017, samples were taken bimonthly. Seven sampling sites were selected and physico-chemical and biological parameters were assessed. By using regression techniques, Landsat 8 information was related with field data to construct and validate a statistical model to determine the distribution of Chl-a in the reservoir (R2 = 0.87). The generated algorithm was used to generate maps which contained information about the dynamics of Chl-a in the entire reservoir. Remote sensing techniques can be used to expand the knowledge of the dynamics of the Cassaffousth reservoir. Moreover, these techniques can be used as baselines for the development of an early warning system for this and other reservoirs in the region.


2021 ◽  
Vol 13 (13) ◽  
pp. 7279
Author(s):  
Zbigniew Skibko ◽  
Magdalena Tymińska ◽  
Wacław Romaniuk ◽  
Andrzej Borusiewicz

Wind power plants are an increasingly common source of electricity located in rural areas. As a result of the high variability of wind power, and thus the generated power, these sources should be classified as unstable sources. In this paper, the authors attempted to determine the impact of wind turbine operation on the parameters of electricity supplied to farms located near the source. As a result of the conducted field tests, variability courses of the basic parameters describing the supply voltage were obtained. The influence of power plant variability on the values of voltage, frequency, and voltage distortion factor was determined. To estimate the capacity of the transmission lines, the reactive power produced in the power plant and its effect on the value of the power factor were determined. The conducted research and analysis showed that the wind power plant significantly influences voltage fluctuations in its immediate vicinity (the maximum value registered was close to 2%, while the value required by law was 2.5%). Although all the recorded values are within limits specified by the current regulations (e.g., the THD value is four times lower than the required value), wind turbines may cause incorrect operation of loads connected nearby. This applies mainly to cases where consumers sensitive to voltage fluctuations are installed in the direct vicinity of the power plant.


2021 ◽  
Vol 13 (9) ◽  
pp. 1683
Author(s):  
Nandini Menon ◽  
Grinson George ◽  
Rajamohananpillai Ranith ◽  
Velakandy Sajin ◽  
Shreya Murali ◽  
...  

Turbidity and water colour are two easily measurable properties used to monitor pollution. Here, we highlight the utility of a low-cost device—3D printed, hand-held Mini Secchi disk (3DMSD) with Forel-Ule (FU) colour scale sticker on its outer casing—in combination with a mobile phone application (‘TurbAqua’) that was provided to laymen for assessing the water quality of a shallow lake region after demolition of four high-rise buildings on the shores of the lake. The demolition of the buildings in January 2020 on the banks of a tropical estuary—Vembanad Lake (a Ramsar site) in southern India—for violation of Indian Coastal Regulation Zone norms created public uproar, owing to the consequences of subsequent air and water pollution. Measurements of Secchi depth and water colour using the 3DMSD along with measurements of other important water quality variables such as temperature, salinity, pH, and dissolved oxygen (DO) using portable instruments were taken for a duration of five weeks after the demolition to assess the changes in water quality. Paired t-test analyses of variations in water quality variables between the second week of demolition and consecutive weeks up to the fifth week showed that there were significant increases in pH, dissolved oxygen, and Secchi depth over time, i.e., the impact of demolition waste on the Vembanad Lake water quality was found to be relatively short-lived, with water clarity, colour, and DO returning to levels typical of that period of year within 4–5 weeks. With increasing duration after demolition, there was a general decrease in the FU colour index to 17 at most stations, but it did not drop to 15 or below, i.e., towards green or blue colour indicating clearer waters, during the sampling period. There was no significant change in salinity from the second week to the fifth week after demolition, suggesting little influence of other factors (e.g., precipitation or changes in tidal currents) on the inferred impact of demolition waste. Comparison with pre-demolition conditions in the previous year (2019) showed that the relative changes in DO, Secchi depth, and pH were very high in 2020, clearly depicting the impact of demolition waste on the water quality of the lake. Match-ups of the turbidity of the water column immediately before and after the demolition using Sentinel 2 data were in good agreement with the in situ data collected. Our study highlights the power of citizen science tools in monitoring lakes and managing water resources and articulates how these activities provide support to Sustainable Development Goal (SDG) targets on Health (Goal 3), Water quality (Goal 6), and Life under the water (Goal 14).


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
MANOJ KUMAR SHUKLA

Present study points out the impact of Lockdown on the health of the Yamuna river at Delhi stretch by comparing prelockdown and Post-lockdown period by studying the reports of pollution monitoring agencies. Delhi segment of the Yamuna is highly polluted, where alongwith domestic sewage a huge quantity of industrial waste is being discharged continuously without proper treatment. Pre lockdown (March 2020) water quality parameters at three sampling stations named as Palla, Nizammuddin Bridge and Okhla barrage U/s in Delhi were, pH were 8.7, 7.3 and 7.2, DO were 17.1 mg/L, not detected in later two sites, BOD were 7.9 mg/L, 57 mg/L and 27 mg/L and COD were 28 mg/L, 90 mg/L and 95 mg/L respectively and postlockdown period (April 2020) the pH was 7.8, 7.2 and 7.1, DO was 8.3 mg/L, 2.4 mg/L and 1.2 mg/L BOD was 2 mg/L, 5.6 mg/ L and 6.1 mg/L and COD were 6 mg/L, 16 mg/L and 18 mg/L respectively. The study of these parameters at three sampling stations reveals that the lack of industrial pollutants discharging due to nationwide lockdown for COVID-19 pandemic had positive effect on water quality of this river. Water quality could be maintained by planned establishment of industries and setup of ETP with without gap between generation and treatment.


2015 ◽  
Vol 67 (4) ◽  
pp. 1437-1437
Author(s):  
E Editorial

This is a notice of retraction of the article: The evaluation of fish farming impact by nutrient content and chlorophyll A in Mala Lamljana bay, published in the Archives of Biological Sciences in 2013, Vol. 65, Issue 3. The Editor-in-Chief has been informed that the data in this article has already been published in the following article: Jelic Mrcelic G, Sliskovic M. The impact of fish cages on water quality in one fish farm in Croatia. Int Sci Index. 2010;4(8):775-8. Inspection of these articles has revealed the following: a significant part of the data in the article published in the Archives of Biological Sciences was published without proper cross-referencing to the data already published in the earlier paper. This issue was discussed with one of the two authors and it was mutually agreed to retract the article. <br><br><font color="red"><b> Link to the retracted article <u><a href="http://dx.doi.org/10.2298/ABS1302567J">10.2298/ABS1302567J</a></b></u>


2017 ◽  
Vol 14 (3) ◽  
pp. 251
Author(s):  
Rita Yulianti ◽  
Emi Sukiyah ◽  
Nana Sulaksana

Daerah penelitian terletak di desa Muaro Limun, Kecamatan Limun Kabupaten Sarolangun Provinsi Jambi. Sungai limun, salah satu sungai besar di daerah kabupaten sarolangun yang dimanfaatkan oleh mayarakat sekitarnya sebagai sumber penghidupan. Penelitian bertujuan untuk mengetahui pengaruh kegiatan penambangan terhadap kualitas air sungai Batang Limun, dan perubahan sifat fisik dan  kimia yang diakibatkan   kegiatan penambangan.Metode yang digunakan adalah  metode grab sampel, serta stream sedimen untuk dianalis di laboratorium. Sejumlah sampel diambil di beberapa lokasi Penambangan Emas berdasarkan Aliran Sub-DAS dan dibandingkan dengan beberapa sampel lain yang diambil pada lokasi yang belum terkontaminasi oleh kegiatan penambangan. Analisis kualitas air mengacu pada  SMEWWke 22 tahun 2012 dan standar baku mutu air kelas II dalam PP No 82 yang dikeluarkan oleh Menteri Kesehatan No. 492/Menkes/Per/IV/2010. Diketahui sungai Batang Limun telah mengalami perubahan karakteristik fisika dan kimia. Dari grafik  kosentrasi kekeruhan, pH, TSS, TDS  Cu, Pb, Zn, Mn, Hg terlihat bahwa penambang emas tanpa izin (PETI) dengan cara amalgamasi yang menyebabkan terjadinya penurunan kualitas air sungai. Sejak tahun 2009 sampai tahun 2015  sungai Limun dan sekitarnya terus mengalami penurunan kualitas air. Penurunan kualitas yang cukup tinggi terjadi  yaitu peningkatan nilai Rata-rata konsentrasi merkuri pada sungai Batang Limun dari 0,18ppb (0,00018 mg/l)  menjadi 0,3ppb (0,0003 mg/l), peningkatan tersebut dipengaruhi oleh proses kegiatan penambangan dan nilai tersebut masih dibawah standar baku mutu air kelas II  pp nomor 82 tahun 2010.Kata kunci :   Kualitas Air, Sungai Limun,TSS, Merkuri, PETI Limun river is one of the major rivers in the area of Sarolangun, which utilized by the society as a source of livelihood. The aim of study  to analyze the effect of mining activities on  the water quality of Batang Limun River, and the changes of physical and chemical properties of water. The method used are grab  and stream samples to  sediment analyzed in the laboratory. A number of samples were taken at several locations based Flow Gold Mining Sub-watershed and compared to some other samples taken at the location that has not been contaminated by mining activities. Water quality analysis referring to SMEWW, 22nd edition 2012 and refers to Regulation No 82 that issued by Minister of Health No. 492 / Menkes / Per / IV / 2010.The results showed that the Limun river has undergone chemical changes in physical characteristics. These symptoms can be seen from the discoloration of clear water in the river before the mine becomes brownish after mining, based on graphic of muddiness concentration: pH, TSS, TDS Cu, Pb, Zn, Mn, Hg have seen that  the illegal miner which used amalgamation caused deterioration in water quality, data from 2009 to 2015 Limun river and surrounding areas continue to experience a decrease in water quality. The decreasing of water quality showed in the TSS parameter which found in the area is to high based on  the standard of water quality class II pp number 82 of 2010. An increase in the value of average concentrations of mercury in the Batang Limun river before mine 0,18ppb (0.00018 mg / l) into 0,3ppb (0.0003 mg / l) on the river after the mine. The increase was affected by the mining activities and the value is still below the air quality standard Grade II pp numbers 82 years 2010, although the value is still below with the standards quality standard, the mercury levels in water should still be a major concern because if it accumulates continuously in the water levels will increase and will be bad for health. In contrast to the concentration of mercury in sediments that have a higher value is 153 ppb (0,513ppm ) .Key Words :   Water Quality, Limun River, Mercury, Illegal gold mining


Author(s):  
Gilbert K. Gaboutloeloe ◽  
Gugu Molokwe ◽  
Benedict Kayombo

The impact of partially treated wastewater on the water quality of Notwane river stretch in the Gaborone region of Botswana was investigated. Water samples collected at effluent discharge point and three other sampling sites downstream were analyzed for pH, temperature, Biological Oxygen Demand (BOD5), Ammonia-nitrogen (Ammonia-N) and Nitrate-nitrogen (Nitrate-N). Sampling was conducted bi-weekly between February 2013 and April 2013. The ranges of measured parameters were:  pH (7.6-8.5), temperature (22-23ºC), BOD5 (11.2-27.0 mg/l), Ammonia-N (2.4-60.5 mg/l), Nitrate-N (20.6-28.6 mg/l). Analysis of variance, Games-Howel multiple comparisons and Pearson correlation were used to separate variable means. The results signal river non-point pollution due to runoff inflow of organics mainly from land use and domestic waste dumping by nearby dwellings. Temperature, BOD5, and pH range values were all within the Botswana Bureau of Standards (BOBS) limit while the maximum Ammonia-N and Nitrate-N were above BOBS limit by 50.5 mg/l and 6.6 mg/l, respectively. Regulations on indiscriminate waste dumping and discharge standards adherence should be enforced.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022020
Author(s):  
Jiahuan Yu ◽  
Xiaofeng Zhang

Abstract With the development of the nuclear energy industry and the increasing demand for environmental protection, the impact of nuclear power plant radiation on the environment has gradually entered the public view. This article combs the nuclear power plant radiation environmental management systems of several countries, takes the domestic and foreign management of radioactive effluent discharge from nuclear power plants as a starting point, analyses and compares the laws and standards related to radioactive effluents from nuclear power plants in France, the United States, China, and South Korea. In this paper, the management improvement of radioactive effluent discharge system of Chinese nuclear power plants has been discussed.


Sign in / Sign up

Export Citation Format

Share Document