scholarly journals Iterative approximations of common fixed points with simulation results in Banach spaces

Author(s):  
Ashis Bera ◽  
Ankush Chanda ◽  
Lakshmi Kanta Dey

In this article, we propose the Abbas-Nazir three step iteration scheme and employ the algorithm to study the common fixed points of a pair of generalized $\alpha$-Reich-Suzuki non-expansive mappings defined on a Banach space. Moreover, we explore a few weak and strong convergence results concerning such mappings. Our findings are aptly validated by non-trivial and constructive numerical examples and finally, we compare our results with that of the other noteworthy iterative schemes utilizing MATLAB $2017$a software. However, we perceive that for a different set of parameters and initial points, the newly proposed iterative scheme converges faster than the other well-known algorithms. To be specific, we give an analytic proof of the claim that the novel iteration scheme is also faster than that of Liu et al.

2004 ◽  
Vol 2004 (37) ◽  
pp. 1965-1971 ◽  
Author(s):  
Hafiz Fukhar-ud-din ◽  
Safeer Hussain Khan

A two-step iterative scheme with errors has been studied to approximate the common fixed points of two asymptotically nonexpansive mappings through weak and strong convergence in Banach spaces.


Author(s):  
S. C. Shrivastava

<div><p> <em>In this paper, we study the approximation of common fixed points for more general classes of mappings through weak and strong convergence results of an iterative scheme in a uniformly convex Banach space. Our results extend and improve some known recent results.</em></p></div>


2009 ◽  
Vol 2009 ◽  
pp. 1-14 ◽  
Author(s):  
S. Imnang ◽  
S. Suantai

We introduce a general iteration scheme for a finite family of generalized asymptotically quasi-nonexpansive mappings in Banach spaces. The new iterative scheme includes the multistep Noor iterations with errors, modified Mann and Ishikawa iterations, three-step iterative scheme of Xu and Noor, and Khan and Takahashi scheme as special cases. Our results generalize and improve the recent ones announced by Khan et al. (2008), H. Fukhar-ud-din and S. H. Khan (2007), J. U. Jeong and S. H. Kim (2006), and many others.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
J. O. Olaleru ◽  
H. Akewe

We introduce the Jungck-multistep iteration and show that it converges strongly to the unique common fixed point of a pair of weakly compatible generalized contractive-like operators defined on a Banach space. As corollaries, the results show that the Jungck-Mann, Jungck-Ishikawa, and Jungck-Noor iterations can also be used to approximate the common fixed points of such maps. The results are improvements, generalizations, and extensions of the work of Olatinwo and Imoru (2008), Olatinwo (2008). Consequently, several results in literature are generalized.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 522 ◽  
Author(s):  
Javid Ali ◽  
Faeem Ali ◽  
Puneet Kumar

In this paper, we study a three step iterative scheme to approximate fixed points of Suzuki’s generalized non-expansive mappings. We establish some weak and strong convergence results for such mappings in uniformly convex Banach spaces. Further, we show numerically that the considered iterative scheme converges faster than some other known iterations for Suzuki’s generalized non-expansive mappings. To support our claim, we give an illustrative numerical example and approximate fixed points of such mappings using Matlab program. Our results are new and generalize several relevant results in the literature.


Author(s):  
Javid Ali ◽  
Faeem Ali ◽  
Puneet Kumar

In this paper, we study a three step iterative scheme to approximate fixed points of Suzuki's generalized non-expansive mappings. We establish some weak and strong convergence results for such mappings in uniformly convex Banach spaces. Further, we show numerically that iterative scheme (1.8) converges faster than some other known iterations for Suzuki's generalized non-expansive mappings. To support our claim, we give an illustrative example and approximate fixed points of such mappings using Matlab program. Our results are new and generalize several relevant results in the literature.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Peixia Yang ◽  
Yonghong Yao ◽  
Yeong-Cheng Liou ◽  
Rudong Chen

Two hybrid algorithms for the variational inequalities over the common fixed points set of nonexpansive semigroups are presented. Strong convergence results of these two hybrid algorithms have been obtained in Hilbert spaces. The results improve and extend some corresponding results in the literature.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1945
Author(s):  
Mujahid Abbas ◽  
Hira Iqbal ◽  
Manuel De la De la Sen ◽  
Khushdil Ahmad

The purpose of this article is to initiate the notion of monotone multivalued generalized (α,β)-nonexpansive mappings and explore the iterative approximation of the fixed points for the mapping in an ordered CAT(0) space. In particular, we employ the S-iteration algorithm in CAT(0) space to prove some convergence results. Moreover, some examples and useful results related to the proposed mapping are provided. Numerical experiments are also provided to illustrate and compare the convergence of the iteration scheme. Finally, an application of the iterative scheme has been presented in finding the solutions of integral differential equation.


Sign in / Sign up

Export Citation Format

Share Document