scholarly journals Litter mixing effect on decomposition rate and nutrient release to water: low quality leaves of coastal species

Author(s):  
Lili Wei

Non-additive effect on litter decomposition often occurs in mixed terrestrial communities but little investigated on coastal ecosystems. We selected three common mangrove species and one alien saltmarsh species from a coastal wetland stand to test whether non-additive effect occurs when the litters of these coastal species mixed together. To avoid the heterogeneity of soil conditions and to detect nutrient release into water, we conducted an in vitro litter-bag experiment in a glasshouse. Among three litter mixtures, the non-additive effect was observed in the litter mixture composed of mangrove species Aegiceras corniculatum vs. Kandelia obovata (antagonistic) and A. corniculatum vs. Avicennia marina (synergistic), but not in the litter mixture of A. corniculatum vs. Spartina alterniflora (the alien saltmarsh species). The strength of non-additive effect was unrelated to litter initial trait dissimilarity. Instead, litter decomposition rate and mass remaining of litter mixtures were strongly related to the community-weighted mean of leaf carbon. The nutrients and carbon released into water were more likely controlled by litter decomposition rate rather than by litter initial nutrient concentrations. These findings would lead to the expectations on ecosystem scale that the mangrove stand mixed with A. corniculatum and K. obovata accumulates more organic carbon in the sediment and releases less nutrients into water column than the stand composed of A. corniculatum and A. marina . It is also implying that the alien species S. alterniflora invasion may not reduce soil carbon stock of mangrove forests. These hypotheses need to be further tested and which will be suggestive for the protection or reconstruction of coastal wetlands.

Author(s):  
Lili Wei

Coastal wetlands are among the most carbon-rich ecosystems in the world. Litter decomposition is a major process controlling soil carbon input. Litter mixing has shown a non-additive effect on the litter decomposition of terrestrial plants particularly of those species having contrasting litter quality. But the non-additive effect has been rarely tested in coastal plants which generally having low-quality litters. We selected three common mangrove species and one saltmarsh species, co-occurring in subtropical coasts, to test whether the non-additive effect occurs when the litters of these coastal species mixing together. We are also concerned whether the changes in the decomposition rate of litter will affect the nutrient contents in waters. A litter-bag experiment was carried out in a glasshouse with single and mixed leaf litters. A non-additive effect was observed in the litter mixtures of mangrove species Aegiceras corniculatum vs. Kandelia obovata (antagonistic) and A. corniculatum vs. Avicennia marina (synergistic). Whereas, the mixture of A. corniculatum (mangrove species) and Spartina alterniflora (saltmarsh species) showed an additive effect. The strength of the non-additive effect was unrelated to the initial trait dissimilarity of litters. Instead, the decomposition rate and mass remaining of litter mixtures were strongly related to the carbon concentrations in litters. Nutrient content in waters was dependent on the decomposition rate of litter mixtures but not on the initial nutrient concentrations in litters. Despite the behind mechanisms were not yet revealed by the current study, these findings have improved our understanding of the litter decomposition of coastal species and the consequent nutrient release.


2021 ◽  
Author(s):  
Patrick Ndayambaje ◽  
Lili Wei ◽  
Tingfeng Zhang ◽  
Lin Liu ◽  
Xu Huang ◽  
...  

Abstract Coastal wetlands are among the most carbon-rich ecosystems in the world. Litter decomposition is a major process controlling soil carbon input. Litter mixing has shown a non-additive effect on the litter decomposition of terrestrial plants particularly of those species having contrasting litter quality. But the non-additive effect has been rarely tested in coastal plants. We selected three common mangrove species and one saltmarsh species, co-occurring in subtropical coasts, to test whether the non-additive effect occurs when the litters of these coastal species mixing together. We are also concerned whether the changes in the decomposition rate of litter will affect the nutrient contents in waters. A litter-bag experiment was carried out in a glasshouse with single and mixed leaf litters. A non-additive effect was observed in the litter mixtures of mangrove species Aegiceras corniculatum vs. Kandelia obovata (antagonistic) and A. corniculatum vs. Avicennia marina (synergistic). Whereas, the mixture of A. corniculatum (mangrove species) and Spartina alterniflora (saltmarsh species) showed an additive effect. The strength of the non-additive effect was unrelated to the initial trait dissimilarity of litters. Instead, the decomposition rate and mass remaining of litter mixtures were strongly related to the carbon concentrations in litters. Nutrient content in waters was dependent on the decomposition rate of litter mixtures but not on the initial nutrient concentrations in litters. Despite the behind mechanisms were not yet revealed by the current study, these findings have improved our understanding of the litter decomposition of coastal species and the consequent nutrient release.


Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 338 ◽  
Author(s):  
Songze Wan ◽  
Zhanfeng Liu ◽  
Yuanqi Chen ◽  
Jie Zhao ◽  
Qin Ying ◽  
...  

Soil microorganisms play key roles in ecosystems and respond quickly to environmental changes. Liming and/or understory removal are important forest management practices and have been widely applied to planted forests in humid subtropical and tropical regions of the world. However, few studies have explored the impacts of lime application, understory removal, and their interactive effects on soil microbial communities. We conducted a lime application experiment combined with understory removal in a subtropical Eucalyptus L’Hér. plantation. Responses of soil microbial communities (indicated by phospholipid fatty acids, PLFAs), soil physico-chemical properties, and litter decomposition rate to lime and/or understory removal were measured. Lime application significantly decreased both fungal and bacterial PLFAs, causing declines in total PLFAs. Understory removal reduced the fungal PLFAs but had no effect on the bacterial PLFAs, leading to decreases in the total PLFAs and in the ratio of fungal to bacterial PLFAs. No interaction between lime application and understory removal on soil microbial community compositions was observed. Changes in soil microbial communities caused by lime application were mainly attributed to increases in soil pH and NO3–-N contents, while changes caused by understory removal were mainly due to the indirect effects on soil microclimate and the decreased soil dissolved carbon contents. Furthermore, both lime application and understory removal significantly reduced the litter decomposition rates, which indicates the lime application and understory removal may impact the microbe-mediated soil ecological process. Our results suggest that lime application may not be suitable for the management of subtropical Eucalyptus plantations. Likewise, understory vegetation helps to maintain soil microbial communities and litter decomposition rate; it should not be removed from Eucalyptus plantations.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Slamet Santosa ◽  
Muhamad Ruslan Umar ◽  
Dody Priosambodo ◽  
Rizki Amalia Puji Santosa

Teak Tectona grandis Linn is still used as the main product in the form of wood, while other products, especially environmental services have not received much attention. This study analyzed biomass, carbon stocks and decomposition rate of leaf litter in teak plantations in city forest of Hasanuudin University, Makassar. The individual biomass of teak plants is calculated using the allometric equation, Y=0.11x ρ x D2.62. Carbon stocks were analyzed using a formulation, C=0.47xB. The leaf litter decomposition rate is expressed as the ratio of the remaining litter dry weight, with the formulation, X= (A-B)/A. The number of teak plants in 5 sample plots were 239 trees with an average stem diameter of 20.6cm and an average height of 9.02m. Total biomass in 5 sample plots was 51,712.61g. Carbon stock in 5 sample plots was 24,304.92g. Decomposition rate average of leaf litter of 24.4g during 60 days incubation. The existence of teak plantations is able to reduce CO2 in the atmosphere by as much as 89,199.06gCO2 and resulting in a decomposition rate of teak leaf litter 0.4g per day


2020 ◽  
Vol 715 ◽  
pp. 136601 ◽  
Author(s):  
Osmarina A. Marinho ◽  
Luiz A. Martinelli ◽  
Paulo J. Duarte-Neto ◽  
Edmar A. Mazzi ◽  
Jennifer Y. King

Sign in / Sign up

Export Citation Format

Share Document