scholarly journals The Taylor series method of order $p$ and Adams-Bashforth method on time scales

Author(s):  
Svetlin Georgiev ◽  
Inci Erhan

A recent study on the Taylor series method of second order and the trapezoidal rule for dynamic equations on time scales has been continued by introducing a derivation of the Taylor series method of arbitrary order $p$ on time scales. The error and convergence analysis of the method is also obtained. The 2 step Adams-Bashforth method for dynamic equations on time scales is concluded and applied to examples of initial value problems for nonlinear dynamic equations. Numerical results are presented and discussed.

2014 ◽  
Vol 2014 ◽  
pp. 1-28
Author(s):  
Jiang Zhu ◽  
Dongmei Liu

Some delta-nabla type maximum principles for second-order dynamic equations on time scales are proved. By using these maximum principles, the uniqueness theorems of the solutions, the approximation theorems of the solutions, the existence theorem, and construction techniques of the lower and upper solutions for second-order linear and nonlinear initial value problems and boundary value problems on time scales are proved, the oscillation of second-order mixed delat-nabla differential equations is discussed and, some maximum principles for second order mixed forward and backward difference dynamic system are proved.


Author(s):  
Levon K. Babadzanjanz ◽  
◽  
Irina Yu. Pototskaya ◽  
Yulia Yu. Pupysheva ◽  
◽  
...  

Many of total systems of PDEs can be reduced to the polynomial form. As was shown by various authors, one of the best methods for the numerical solution of the initial value problem for ODE systems is the Taylor Series Method (TSM). In the article, the authors consider the Cauchy problem for the total polynomial PDE system, obtain the recurrence formulas for Taylor coefficients, and then formulate and prove a theorem on the accuracy of its solutions by TSM.


Sign in / Sign up

Export Citation Format

Share Document