Characterization of platelet functionality in pediatric patients with kaposiform hemangioendothelioma / Kasabach-Merritt phenomenon
Background. Kaposiform hemangioendothelioma (KHE) is a rare vascular tumor of infancy commonly associated with Kasabach-Merritt phenomenon (KMP) that includes thrombocytopenia and coagulation dysfunction. Platelet receptor CLEC-2 -tumor cell podoplanin interaction is considered the key mechanism of thrombocytopenia in KMP, however, the effect of long-term exposure to podoplanin on platelet function is unknown. Procedure. Here we examined blood samples from 7 patients with KHE/KMP. Platelet calcium signaling and functional responses to conventional activation and CLEC-2 stimulation were analyzed by continuous and endpoint live cell flow cytometry. Platelet aggregation in response to ADP or rhodocytin was analyzed by low-angle light scattering approach (LaSca). Additionally, ex vivo thrombus formation on collagen was observed in parallel-plate flow chambers. Results. We demonstrate that in KHE/KMP platelet functional responses to strong stimulation were on the lower boundary of age-matched normal ranges, while calcium mobilization and fibrinogen binding upon stimulation with ADP alone were significantly lower than control values. Platelet di-aggregate formation in response to ADP was also diminished in most of the patients. Formation of platelet aggregates in collagen-coated parallel plate flow chambers was also noticeably lower than in the age-matched control group. Calcium mobilization in response to CLEC-2 stimulation was unaltered in the patients and could be blocked by low-molecular-weight inhibitors, 2CP and HB125. Conclusions. While platelet responsiveness in KHE/KMP is moderately altered, platelet CLEC-2 receptors remain functional and respond to inhibition. Therefore, our findings suggest that CLEC-2-targeting molecules are new potential agents in therapeutic management of this life-threatening condition.