Hybrid Classification in Bag of Visual Words Model

2018 ◽  
Vol 3 (4) ◽  
pp. 10-15
Author(s):  
Baldemar Zurita ◽  
Luís Luna ◽  
José Hernández ◽  
José Ramírez

Classification of images by means of the BOVW method is well known and applied in different recognition projects, this method rely on three phases: detection and extraction of characteristics, representation of the image and finally the classification. SIFT, Kmeans and SVM is the most accepted combination. This article aims to demonstrate that this combination is not always the best choice for all types of datasets, different training sets of images were created from scratch and will be used for the bag of visual words model: the first phase of detection and extraction, SIFT will be used, later in the second phase a dictionary of words will be created through a clustering process using K-means, EM, K-means in combination with EM, finally, for classification it will be compared the algorithms of SVM, Gaussian NB, KNN, Decision Tree, Random Forest, Neural Network and AdaBoost in order to determine the performance and accuracy of every method.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chenxi Yang ◽  
Banish D. Ojha ◽  
Nicole D. Aranoff ◽  
Philip Green ◽  
Negar Tavassolian

Abstract This paper introduces a study on the classification of aortic stenosis (AS) based on cardio-mechanical signals collected using non-invasive wearable inertial sensors. Measurements were taken from 21 AS patients and 13 non-AS subjects. A feature analysis framework utilizing Elastic Net was implemented to reduce the features generated by continuous wavelet transform (CWT). Performance comparisons were conducted among several machine learning (ML) algorithms, including decision tree, random forest, multi-layer perceptron neural network, and extreme gradient boosting. In addition, a two-dimensional convolutional neural network (2D-CNN) was developed using the CWT coefficients as images. The 2D-CNN was made with a custom-built architecture and a CNN based on Mobile Net via transfer learning. After the reduction of features by 95.47%, the results obtained report 0.87 on accuracy by decision tree, 0.96 by random forest, 0.91 by simple neural network, and 0.95 by XGBoost. Via the 2D-CNN framework, the transfer learning of Mobile Net shows an accuracy of 0.91, while the custom-constructed classifier reveals an accuracy of 0.89. Our results validate the effectiveness of the feature selection and classification framework. They also show a promising potential for the implementation of deep learning tools on the classification of AS.


Author(s):  
P.L. Nikolaev

This article deals with method of binary classification of images with small text on them Classification is based on the fact that the text can have 2 directions – it can be positioned horizontally and read from left to right or it can be turned 180 degrees so the image must be rotated to read the sign. This type of text can be found on the covers of a variety of books, so in case of recognizing the covers, it is necessary first to determine the direction of the text before we will directly recognize it. The article suggests the development of a deep neural network for determination of the text position in the context of book covers recognizing. The results of training and testing of a convolutional neural network on synthetic data as well as the examples of the network functioning on the real data are presented.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 45993-45999
Author(s):  
Ung Yang ◽  
Seungwon Oh ◽  
Seung Gon Wi ◽  
Bok-Rye Lee ◽  
Sang-Hyun Lee ◽  
...  

2021 ◽  
Vol 185 ◽  
pp. 223-230
Author(s):  
Iren Valova ◽  
Chris Harris ◽  
Natacha Gueorguieva ◽  
Tony Mai

2010 ◽  
Vol 7 (2) ◽  
pp. 366-370 ◽  
Author(s):  
Sheng Xu ◽  
Tao Fang ◽  
Deren Li ◽  
Shiwei Wang

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Faizan Ullah ◽  
Qaisar Javaid ◽  
Abdu Salam ◽  
Masood Ahmad ◽  
Nadeem Sarwar ◽  
...  

Ransomware (RW) is a distinctive variety of malware that encrypts the files or locks the user’s system by keeping and taking their files hostage, which leads to huge financial losses to users. In this article, we propose a new model that extracts the novel features from the RW dataset and performs classification of the RW and benign files. The proposed model can detect a large number of RW from various families at runtime and scan the network, registry activities, and file system throughout the execution. API-call series was reutilized to represent the behavior-based features of RW. The technique extracts fourteen-feature vector at runtime and analyzes it by applying online machine learning algorithms to predict the RW. To validate the effectiveness and scalability, we test 78550 recent malign and benign RW and compare with the random forest and AdaBoost, and the testing accuracy is extended at 99.56%.


Lubricant condition monitoring (LCM), part of condition monitoring techniques under Condition Based Maintenance, monitors the condition and state of the lubricant which reveal the condition and state of the equipment. LCM has proved and evidenced to represent a key concept driving maintenance decision making involving sizeable number of parameter (variables) tests requiring classification and interpretation based on the lubricant’s condition. Reduction of the variables to a manageable and admissible level and utilization for prediction is key to ensuring optimization of equipment performance and lubricant condition. This study advances a methodology on feature selection and predictive modelling of in-service oil analysis data to assist in maintenance decision making of critical equipment. Proposed methodology includes data pre-processing involving cleaning, expert assessment and standardization due to the different measurement scales. Limits provided by the Original Equipment Manufacturers (OEM) are used by the analysts to manually classify and indicate samples with significant lubricant deterioration. In the last part of the methodology, Random Forest (RF) is used as a feature selection tool and a Decision Tree-based (DT) classification of the in-service oil samples. A case study of a thermal power plant is advanced, to which the framework is applied. The selection of admissible variables using Random Forest exposes critical used oil analysis (UOA) variables indicative of lubricant/machine degradation, while DT model, besides predicting the classification of samples, offers visual interpretability of parametric impact to the classification outcome. The model evaluation returned acceptable predictive, while the framework renders speedy classification with insights for maintenance decision making, thus ensuring timely interventions. Moreover, the framework highlights critical and relevant oil analysis parameters that are indicative of lubricant degradation; hence, by addressing such critical parameters, organizations can better enhance the reliability of their critical operable equipment.


1993 ◽  
Vol 4 (6) ◽  
pp. 962-969 ◽  
Author(s):  
R. Anand ◽  
K.G. Mehrotra ◽  
C.K. Mohan ◽  
S. Ranka

Sign in / Sign up

Export Citation Format

Share Document