visual words
Recently Published Documents


TOTAL DOCUMENTS

632
(FIVE YEARS 133)

H-INDEX

38
(FIVE YEARS 4)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Chiranjibi Sitaula ◽  
Tej Bahadur Shahi ◽  
Sunil Aryal ◽  
Faezeh Marzbanrad
Keyword(s):  
X Ray ◽  

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jiaming Xue ◽  
Shun Xiong ◽  
Chaoguang Men ◽  
Zhiming Liu ◽  
Yongmei Liu

Remote-sensing images play a crucial role in a wide range of applications and have been receiving significant attention. In recent years, great efforts have been made in developing various methods for intelligent interpretation of remote-sensing images. Generally speaking, machine learning-based methods of remote-sensing image interpretation require a large number of labeled samples and there are still not enough annotated datasets in the field of remote sensing. However, manual annotation of remote-sensing images is usually labor-intensive and requires expert knowledge and the accuracy of annotation results is relatively low. The goal of this paper is to propose a novel tile-level annotation method of remote-sensing images to obtain remote-sensing datasets which are well-labeled and contain accurate semantic concepts. Firstly, we use a set of images with defined semantic concepts to represent the training set and divide them into several nonoverlapping regions. Secondly, the color features, texture features, and spatial features of each region are extracted, and discriminative features are obtained by the weight optimization feature fusion method. Then, the features are quantized into visual words by applying a density-based clustering center selection method and an isolated feature point elimination method. And the remote-sensing images can be represented by a series of visual words. Finally, the LDA model is used to calculate the probabilities of semantic categories for each region. The experiments are conducted on remote-sensing images which demonstrate that our proposed method can achieve good performance on remote-sensing image tile-level annotation. The implications of our research can obtain annotated datasets with accurate semantic concepts for intelligent interpretation of remote-sensing images.


2021 ◽  
Author(s):  
Elena Pyatigorskaya ◽  
Matteo Maran ◽  
Emiliano Zaccarella

Language comprehension proceeds at a very fast pace. It is argued that context influences the speed of language comprehension by providing informative cues for the correct processing of the incoming linguistic input. Priming studies investigating the role of context in language processing have shown that humans quickly recognise target words that share orthographic, morphological, or semantic information with their preceding primes. How syntactic information influences the processing of incoming words is however less known. Early syntactic priming studies reported faster recognition for noun and verb targets (e.g., apple or sing) following primes with which they form grammatical phrases or sentences (the apple, he sings). The studies however leave open a number of questions about the reported effect, including the degree of automaticity of syntactic priming, the facilitative versus inhibitory nature, and the specific mechanism underlying the priming effect—that is, the type of syntactic information primed on the target word. Here we employed a masked syntactic priming paradigm in four behavioural experiments in German language to test whether masked primes automatically facilitate the categorization of nouns and verbs presented as flashing visual words. Overall, we found robust syntactic priming effects with masked primes—thus suggesting high automaticity of the process—but only when verbs were morpho-syntactically marked (er kau-t; he chew-s). Furthermore, we found that, compared to baseline, primes slow down target categorisation when the relationship between prime and target is syntactically incorrect, rather than speeding it up when the prime-target relationship is syntactically correct. This argues in favour of an inhibitory nature of syntactic priming. Overall, the data indicate that humans automatically extract abstract syntactic features from word categories as flashing visual words, which has an impact on the speed of successful language processing during language comprehension.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chiranjibi Sitaula ◽  
Tej Bahadur Shahi ◽  
Sunil Aryal ◽  
Faezeh Marzbanrad

AbstractChest X-ray (CXR) images have been one of the important diagnosis tools used in the COVID-19 disease diagnosis. Deep learning (DL)-based methods have been used heavily to analyze these images. Compared to other DL-based methods, the bag of deep visual words-based method (BoDVW) proposed recently is shown to be a prominent representation of CXR images for their better discriminability. However, single-scale BoDVW features are insufficient to capture the detailed semantic information of the infected regions in the lungs as the resolution of such images varies in real application. In this paper, we propose a new multi-scale bag of deep visual words (MBoDVW) features, which exploits three different scales of the 4th pooling layer’s output feature map achieved from VGG-16 model. For MBoDVW-based features, we perform the Convolution with Max pooling operation over the 4th pooling layer using three different kernels: $$1 \times 1$$ 1 × 1 , $$2 \times 2$$ 2 × 2 , and $$3 \times 3$$ 3 × 3 . We evaluate our proposed features with the Support Vector Machine (SVM) classification algorithm on four CXR public datasets (CD1, CD2, CD3, and CD4) with over 5000 CXR images. Experimental results show that our method produces stable and prominent classification accuracy (84.37%, 88.88%, 90.29%, and 83.65% on CD1, CD2, CD3, and CD4, respectively).


2021 ◽  
Author(s):  
Mukhil Azhagan Mallaiyan Sathiaseelan ◽  
Olivia P. Paradis ◽  
Rajat Rai ◽  
Suryaprakash Vasudev Pandurangi ◽  
Manoj Yasaswi Vutukuru ◽  
...  

Abstract In this manuscript, we present our work on Logo classification in PCBs for Hardware assurance purposes. Identifying and classifying logos have important uses for text detection, component authentication and counterfeit detection. Since PCB assurance faces the lack of a representative dataset for classification and detection tasks, we collect different variants of logos from PCBs and present data augmentation techniques to create the necessary data to perform machine learning. In addition to exploring the challenges for image classification tasks in PCBs, we present experiments using Random Forest classifiers, Bag of Visual Words (BoVW) using SIFT and ORB Fully Connected Neural Networks (FCN) and Convolutional Neural Network (CNN) architectures. We present results and also a discussion on the edge cases where our algorithms fail including the potential for future work in PCB logo detection. The code for the algorithms along with the dataset that includes 18 classes of logos with 14000+ images is provided at this link: https://www.trusthub.org/#/data Index Terms—AutoBoM, Logo classification, Data augmentation, Bill of materials, PCB Assurance, Hardware Assurance, Counterfeit avoidance


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1980
Author(s):  
Sergey Alekseevich Korchagin ◽  
Sergey Timurovich Gataullin ◽  
Aleksey Viktorovich Osipov ◽  
Mikhail Viktorovich Smirnov ◽  
Stanislav Vadimovich Suvorov ◽  
...  

The article discusses the problem of detecting sick or mechanically damaged potatoes using machine learning methods. We proposed an algorithm and developed a system for the rapid detection of damaged tubers. The system can be installed on a conveyor belt in a vegetable store, and it consists of a laptop computer and an action camera, synchronized with a flashlight system. The algorithm consists of two phases. The first phase uses the Viola-Jones algorithm, applied to the filtered action camera image, so it aims to detect separate potato tubers on the conveyor belt. The second phase is the application of a method that we choose based on video capturing conditions. To isolate potatoes infected with certain types of diseases (dry rot, for example), we use the Scale Invariant Feature Transform (SIFT)—Support Vector Machine (SVM) method. In case of inconsistent or weak lighting, the histogram of oriented gradients (HOG)—Bag-of-Visual-Words (BOVW)—neural network (BPNN) method is used. Otherwise, Otsu’s threshold binarization—a convolutional neural network (CNN) method is used. The first phase’s result depends on the conveyor’s speed, the density of tubers on the conveyor, and the accuracy of the video system. With the optimal setting, the result reaches 97%. The second phase’s outcome depends on the method and varies from 80% to 97%. When evaluating the performance of the system, it was found that it allows to detect and classify up to 100 tubers in one second, which significantly exceeds the performance of most similar systems.


Sign in / Sign up

Export Citation Format

Share Document