scholarly journals Fabrication of chelating diethylenetriaminated pan micro and nano fibers for heavy metal removal

2012 ◽  
Vol 18 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Majid Abdouss ◽  
Mousavi Shoushtari ◽  
Aminoddin Haji ◽  
Behnam Moshref

In this study, commercial acrylic fibers were modified with diethylenetriamine to prepare metal chelating fibers. The effects of process parameters on the efficiency of the reaction were investigated. FTIR spectroscopy and TGA analysis were used to confirm the chemical changes made to the fibers during the reaction. The ability of the modified fibers for removal of Pb (II), Cu (II) and Ce (IV) ions from aqueous media was determined. The modified fibers showed a slight decrease in mechanical properties compared to raw ones. Furthermore, the acrylic micro fibers were electrospun to nanofibers and the ability of modified nanofibers for the adsorption of the metal ions was studied.

2021 ◽  
Vol 7 (3) ◽  
pp. 138-145
Author(s):  
Parvin Asadifard ◽  
Abbasali Zamani ◽  
Farideh Piri ◽  
Somayyeh Piri ◽  
◽  
...  

2015 ◽  
Vol 73 (5) ◽  
pp. 983-992 ◽  
Author(s):  
Francis Ntumba Muya ◽  
Christopher Edoze Sunday ◽  
Priscilla Baker ◽  
Emmanuel Iwuoha

Heavy metal ions such as Cd2+, Pb2+, Cu2+, Mg2+, and Hg2+ from industrial waste water constitute a major cause of pollution for ground water sources. These ions are toxic to man and aquatic life as well, and should be removed from wastewater before disposal. Various treatment technologies have been reported to remediate the potential toxic elements from aqueous media, such as adsorption, precipitation and coagulation. Most of these technologies are associated with some shortcomings, and challenges in terms of applicability, effectiveness and cost. However, adsorption techniques have the capability of effectively removing heavy metals at very low concentration (1–100 mg/L). Various adsorbents have been reported in the literature for this purpose, including, to a lesser extent, the use of hydrogel adsorbents for heavy metal removal in aqueous phase. Here, we provide an in-depth perspective on the design, application and efficiency of hydrogel systems as adsorbents.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 683
Author(s):  
Hasbleidy Palacios Hinestroza ◽  
Hilary Urena-Saborio ◽  
Florentina Zurita ◽  
Aida Alejandra Guerrero de León ◽  
Gunasekaran Sundaram ◽  
...  

A composite membrane based on polycaprolactone (PCL) and cellulose nanofibers (CNF) with different compositions was prepared using the electro-spinning method, with the objective of developing organic membranes with good mechanical properties to remove contaminants from water. Water is a resource of primary importance for life and human activities. In this sense, cellulose obtained from agave bagasse and polycaprolactone nanofibers was used to prepare membranes that were tested by filtering tap water. The membranes obtained presented a porosity and structure on a nanometric scale. The water quality variables evaluated after filtration with the PCL/CNF membranes showed 100% turbidity removal, 100% conductivity, and heavy metal removal of the order of 75% to 99% for iron and chromium. CNF comprises biowaste derived from tequila production, and it has added value. Electro-spun CNF and PCL membranes can be applied as a “green” and eco-friendly filtration system for water purification.


2021 ◽  
Vol 287 ◽  
pp. 04005
Author(s):  
Khee Chung Hui ◽  
Norashikin Ahmad Kamal ◽  
Nonni Soraya Sambudi ◽  
Muhammad Roil Bilad

In this work, magnetic hydroxyapatite or hydroxyapatite-iron (III) oxide (HAp-Fe3O4) composite was used as the adsorbent of heavy metals and the performance was evaluated using the batch test. The presence of heavy metals in the effluent from wastewater discharge can be toxic to many organisms and can even lead to eye burns. Therefore, hydroxyapatite synthesized from the chemical precipitation of calcium nitrate tetrahydrate and diammonium hydrogen phosphate solutions is used to remove heavy metal in aqueous media. Magnetic properties of Fe3O4 can help prevent formation of secondary pollutants caused by the loss of adsorbent. The synthesized HAp-Fe3O4 can remove cadmium, zinc and lead effectively, which is up to 90% removal. Reusability study shows that the adsorbent could retain heavy metal ions even after four cycles. The percentage removal of heavy metals maintains at around 80% after four times of usage. The composite of HAp-Fe3O4 demonstrates good performance and stability which is beneficial for heavy metal removal in the future.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1508 ◽  
Author(s):  
Fernanda Lyzeth Rivera ◽  
Francisco Javier Palomares ◽  
Pilar Herrasti ◽  
Eva Mazario

Magnetite nanoparticles (Fe3O4) of 12 ± 4 nm diameter are electrochemically synthesized for the adsorption and magnetic harvesting of Cr(VI) from contaminated simulated solutions. The removal of Cr(VI) from aqueous media follows pseudo-second-order kinetics. The adsorption efficiency is evaluated in three different scenarios. In standard conditions, i.e., at room temperature; in a thermal bath working at 60 °C, where the temperature could be considered homogeneous within the solution; and finally, under magnetic induction heating, while adjusting the frequency and magnetic field used to attain the same temperature as in the bath experiments. Two benefits of using a magnetic inductor are demonstrated. First, the removal efficiency is almost doubled in comparison to that of the room temperature experiments, and it is higher by 30% compared to that of the bath setup. At the same time as the adsorption occurs, a redox reaction occurs on the surface of the nanoparticles, and Cr(VI), the predominant species in the contaminated solution, is significantly reduced to Cr(III). Through X-ray photoelectron spectroscopy, it is shown that a greater reduction effect is achieved when working in induction conditions than at room temperature. This is the first time that this synergistic effect using magnetic induction heating has been demonstrated for heavy metal decontamination of wastewater.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 484 ◽  
Author(s):  
Muayad Esaifan ◽  
Laurence N. Warr ◽  
Georg Grathoff ◽  
Tammo Meyer ◽  
Maria-Theresia Schafmeister ◽  
...  

A hydroxy-sodalite/cancrinite zeolite composite was synthesized from low-grade calcite-bearing kaolin by hydrothermal alkali-activation method at 160 °C for 6 h. The effect of calcite addition on the formation of the hydroxy-sodalite/cancrinite composite was investigated using artificial mixtures. The chemical composition and crystal morphology of the synthesized zeolite composite were characterized by X-ray powder diffraction, infrared spectroscopy, scanning electron microscopy, and N2 adsorption/desorption analyses. The average specific surface area is around 17–20 m2·g−1, whereas the average pore size lies in the mesoporous range (19–21 nm). The synthesized zeolite composite was used as an adsorbent for the removal of heavy metals in aqueous solutions. Batch experiments were employed to study the influence of adsorbent dosage on heavy metal removal efficiency. Results demonstrate the effective removal of significant quantities of Cu, Pb, Ni, and Zn from aqueous media. A comparative study of synthesized hydroxy-sodalite and hydroxy-sodalite/cancrinite composites revealed the latter was 16–24% more efficient at removing heavy metals from water. The order of metal uptake efficiency for these zeolites was determined to be Pb > Cu > Zn > Ni. These results indicate that zeolite composites synthesized from natural calcite-bearing kaolin materials could represent effective and low-cost adsorbents for heavy metal removal using water treatment devices in regions of water shortage.


2021 ◽  
Vol 287 ◽  
pp. 112322
Author(s):  
Morteza Nazaripour ◽  
Mir Amir Mohammad Reshadi ◽  
Seyed Ahmad Mirbagheri ◽  
Mehdi Nazaripour ◽  
Alireza Bazargan

Sign in / Sign up

Export Citation Format

Share Document