metal chelating
Recently Published Documents


TOTAL DOCUMENTS

563
(FIVE YEARS 105)

H-INDEX

50
(FIVE YEARS 6)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 132
Author(s):  
İlhami Gulcin ◽  
Saleh H. Alwasel

Heavy metals are essential for a wide range of biological processes, including the growth and reproduction of cells, synthesis of biomolecules, many enzymatic reactions, and the body’s immunity, but their excessive intake is harmful. Specifically, they cause oxidative stress (OS) and generate free radicals and reactive oxygen species (ROS) in metabolism. In addition, the accumulation of heavy metals in humans can cause serious damage to different organs, especially respiratory, nervous and reproductive and digestive systems. Biologically, metal chelation therapy is often used to treat metal toxicity. This process occurs through the interaction between the ligand and a central metal atom, forming a complex ring-like structure. After metals are chelated with appropriate chelating agents, their damage in metabolism can be prevented and efficiently removed from the body. On the other hand, heavy metals, including Zn, Fe and Cu, are necessary for the suitable functioning of different proteins including enzymes in metabolism. However, when the same metals accumulate at levels higher than the optimum level, they can easily become toxic and have harmful effects toward biomolecules. In this case, it induces the formation of ROS and nitrogen species (RNS) resulting in peroxidation of biological molecules such as lipids in the plasma membrane. Antioxidants have an increasing interest in many fields due to their protective effects, especially in food and pharmaceutical products. Screening of antioxidant properties of compounds needs appropriate methods including metal chelating assay. In this study, a general approach to the bonding and chelating properties of metals is described. For this purpose, the basic principles and chemical principles of metal chelation methods, both in vivo and in vitro, are outlined and discussed. Hence, in the main sections of this review, the descriptions related to metal ions, metal chelating, antioxidants, importance of metal chelating in biological system and definitions of metal chelating assays as widely used methods to determine antioxidant ability of compounds are provided. In addition, some chemical properties, technical and critical details of the used chelation methods are given.


2022 ◽  
Vol 1 ◽  
Author(s):  
Viabhav Kumar Upadhayay ◽  
Ajay Veer Singh ◽  
Amir Khan

A contemporary approach to bacterially mediated zinc (Zn) biofortification offers a new dimension in the crop improvement program with better Zn uptake in plants to curb Zn malnutrition. The implication of Zn solubilizing bacteria (ZSB) represents an inexpensive and optional strategy for Zn biofortification, with an ultimate green solution to enlivening sustainable agriculture. ZSB dwelling in the rhizospheric hub or internal plant tissues shows their competence to solubilize Zn via a variety of strategies. The admirable method is the deposition of organic acids (OAs), which acidify the surrounding soil environment. The secretion of siderophores as a metal chelating molecule, chelating ligands, and the manifestation of an oxidative–reductive system on the bacterial cell membrane are further tactics of bacterially mediated Zn solubilization. The inoculation of plants with ZSB is probably a more effective tactic for enhanced Zn translocation in various comestible plant parts. ZSB with plant growth-enhancing properties can be used as bioelicitors for sustainable plant growth via the different approaches that are crucial for plant health and its productivity. This article provides an overview of the functional properties of ZSB-mediated Zn localization in the edible portions of food crops and provides an impetus to explore such plant probiotics as natural biofortification agents.


Pharmacia ◽  
2022 ◽  
Vol 69 (1) ◽  
pp. 9-13
Author(s):  
Theerasak Rojanarata ◽  
Kittithat Maithongdee ◽  
Nattapong Yuwansri ◽  
Sirada Kaewprasert ◽  
Thana Thanayutsiri ◽  
...  

In many pharmacopoeias, the limit test used for determining the level of aluminum in citric acid labeled for use in the manufacture of dialysate, is based on solvent extraction using 8-hydroxyquinoline and measurement of fluorescence. However, the fluorescence intensity (F.I.) readout from the extract of citric acid samples has been found to be highly dubious, showing low value, and even lower than that of a blank solution. The aim of this work therefore was to examine what effects the matrix has on the test. The comparison of the two standard curves of aluminum solutions in water, against those prepared in citric acid solutions revealed that they differed greatly in terms of slope and y-intercept. In addition, the F.I. values on the plot of the citric acid solution were much lower than that prepared in the water. In another experiment, a decrease in the F.I. of aluminum solution was clearly seen when the co-existing concentration of citric acid was increased. The results inferred that citric acid interfered with the test due to its acidity and metal-chelating capabilities. Based on this evidence, the pharmacopeial limit test for aluminum in citric acid should be revised; otherwise, it could yield results that underestimate aluminum levels and lead to inaccurate conclusions


Author(s):  
Kamilia Bireche ◽  
Hocine Dendougui ◽  
Asma Abid ◽  
Abdeldjabbar Messaoudi ◽  
Mohamed Hadjadj

This study aims to investigate phytochemical constituents of Pulicaria laciniata extracts and determine their antioxidant activity using three methods; Phosphomolybdate, Reducing Power, and Metal Chelating. The phytochemical investigation showed various secondary metabolites such as Phenols, Glycosides, Flavonoids, Alkaloids, Tannins, and Terpenoids. The N-butanol extract exhibited the highest antioxidant activity comparing with the other extract in all methods (0.51 and 0.65 mg/ml as A0.5 values of Phosphomolybdate, reducing power) and (1.65mg/ml for IC50 value of metal-chelating). In contrast, all the extracts showed week activity against the metal-chelating method.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6585
Author(s):  
Janez Mravljak ◽  
Lara Slavec ◽  
Martina Hrast ◽  
Matej Sova

Quinazolinones represent an important scaffold in medicinal chemistry with diverse biological activities. Here, two series of 2-substituted quinazolin-4(3H)-ones were synthesized and evaluated for their antioxidant properties using three different methods, namely DPPH, ABTS and TEACCUPRAC, to obtain key information about the structure–antioxidant activity relationships of a diverse set of substituents at position 2 of the main quinazolinone scaffold. Regarding the antioxidant activity, ABTS and TEACCUPRAC assays were more sensitive and gave more reliable results than the DPPH assay. To obtain antioxidant activity of 2-phenylquinazolin-4(3H)-one, the presence of at least one hydroxyl group in addition to the methoxy substituent or the second hydroxyl on the phenyl ring in the ortho or para positions is required. An additional ethylene linker between quinazolinone ring and phenolic substituent, present in the second series (compounds 25a and 25b), leads to increased antioxidant activity. Furthermore, in addition to antioxidant activity, the derivatives with two hydroxyl groups in the ortho position on the phenyl ring exhibited metal-chelating properties. Our study represents a successful use of three different antioxidant activity evaluation methods to define 2-(2,3-dihydroxyphenyl)quinazolin-4(3H)-one 21e as a potent antioxidant with promising metal-chelating properties.


Synlett ◽  
2021 ◽  
Author(s):  
Mark G. Moloney ◽  
Lewis O’Shaughnessy ◽  
Charles Hutchinson ◽  
Adam Waldron ◽  
Kirsten E. Christensen

AbstractBicyclic lactams can be prepared from diethyl aminomalonate and substituted benzaldehydes by formation of a dimerised imidazolidine cycloadduct followed by a Dieckmann ring closure. The resulting N,N-heterocycles are metal-chelating but show no antibacterial activity.


Author(s):  
Justine Sauvage ◽  
Gary H. Wikfors ◽  
Koen Sabbe ◽  
Nancy Nevejan ◽  
Steven Goderis ◽  
...  

AbstractIron (Fe) is an essential nutrient for microalgal metabolism. The low solubility of Fe in oxic aquatic environments can be a growth-limiting factor for phytoplankton. Synthetic chelating agents, such as ethylenediaminetetraacetic acid (EDTA), are used widely to maintain Fe in solution for microalgal cultivation. The non-biodegradable nature of EDTA, combined with sub-optimal bioavailability of Fe-EDTA complexes to microalgae, indicates opportunity to improve microalgal cultivation practices that amplify production efficiency and environmental compatibility. In the present study, the effects of four organic chelating ligands known to form readily bioavailable organic complexes with Fe in natural aquatic environments were investigated in relation to growth and biochemical composition of two marine microalgae grown as live feeds in shellfish hatcheries (Chaetoceros calcitrans and Tisochrysis lutea). Three saccharides, alginic acid (ALG), glucuronic acid (GLU), and dextran (DEX), as well as the siderophore desferrioxamine B (DFB), were compared to EDTA. Organic ligands characterized by weaker binding capacity for cationic metals (i.e., ALG, GLU, DEX) significantly improved microalgal growth and yields in laboratory-scale static batch cultures or bubbled photobioreactors. Maximal microalgal growth enhancement relative to the control (e.g., EDTA) was recorded for GLU, followed by ALG, with 20–35% increase in specific growth rate in the early stages of culture development of C. calcitrans and T. lutea. Substitution of EDTA with GLU resulted in a 27% increase in cellular omega 3-polyunsaturetd fatty acid content of C. calcitrans and doubled final cell yields. Enhanced microalgal culture performance is likely associated with increased intracellular Fe uptake efficiency combined with heterotrophic growth stimulated by the organic ligands. Based upon these results, we propose that replacement of EDTA with one of these organic metal-chelating ligands is an effective and easily implementable strategy to enhance the environmental compatibility of microalgal cultivation practices while also maximizing algal growth and enhancing the nutritional quality of marine microalgal species commonly cultured for live-feed applications in aquaculture.


Author(s):  
Kaur Kamaljit ◽  
Sharma Anchit

This study was planned to utilize by-products of baby corn, which was powdered upon drying. Different formulations containing baby corn: defatted soya: plantain: finger millet flours at 10:65:20:5, 15:55:20:10, 20:45:20:15 and 25:35:20:20 were prepared and analyzed for functional, nutritional and bioactive properties of the blended flours and muffins. The outcomes indicated that incorporation of baby corn flour had enhanced functional and pasting properties of the blended flours. The addition of baby corn flour increased the antioxidant properties and metal chelating activity of blended flours. The incorporation of baby corn flour had contributed better retention of antioxidant potential during baking as muffins with 25% baby corn showed more increase in antioxidant properties than 10% baby corn muffins. Hardness and specific volume of muffins increased, while total phenol content decreased significantly with increment in the level of baby corn flour. On the basis of sensory analysis muffins prepared with 20% level of baby corn flour was selected best. This study concluded that by-products of baby corn can be utilized for development of gluten free muffins with better nutrition and bioactive properties.


Author(s):  
Sarah El Hajj ◽  
Cindy Tatiana Sepúlveda Rincón ◽  
Jean-Michel Girardet ◽  
Céline Cakir-Kiefer ◽  
Loic Stefan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document