scholarly journals Petri nets on the semantic web guidelines and infrastructure

2004 ◽  
Vol 1 (2) ◽  
pp. 127-151 ◽  
Author(s):  
Dragan Gasevic

This paper gives the Petri net ontology as the most important element in providing Petri net support for the Semantic Web. Available Petri net formal descriptions are: metamodels, UML profiles, ontologies and syntax. Metamodels are useful, but their main purpose is for Petri net tools. Although the current Petri-net community effort Petri Net Markup Language (PNML) is XML-based, it lacks a precise definition of semantics. Existing Petri net ontologies are partial solutions specialized for a specific problem. In order to show current Petri net model sharing features we use P3 tool that uses PNML/XSLT-based approach for model sharing. This paper suggests developing the Petri net ontology to represent semantics appropriately. This Petri net ontology is described using UML, Resource Description Framework (Schema) RDF(S) and the Web Ontology Language-OWL.

2008 ◽  
pp. 3309-3320
Author(s):  
Csilla Farkas

This chapter investigates the threat of unwanted Semantic Web inferences. We survey the current efforts to detect and remove unwanted inferences, identify research gaps, and recommend future research directions. We begin with a brief overview of Semantic Web technologies and reasoning methods, followed by a description of the inference problem in traditional databases. In the context of the Semantic Web, we study two types of inferences: (1) entailments defined by the formal semantics of the Resource Description Framework (RDF) and the RDF Schema (RDFS) and (2) inferences supported by semantic languages like the Web Ontology Language (OWL). We compare the Semantic Web inferences to the inferences studied in traditional databases. We show that the inference problem exists on the Semantic Web and that existing security methods do not fully prevent indirect data disclosure via inference channels.


2011 ◽  
Vol 26 (4) ◽  
pp. 445-486 ◽  
Author(s):  
Juan F. Sequeda ◽  
Syed Hamid Tirmizi ◽  
Oscar Corcho ◽  
Daniel P. Miranker

AbstractThe Semantic Web anticipates integrated access to a large number of information sources on the Internet represented as Resource Description Framework (RDF). Given the large number of websites that are backed by SQL databases, methods that automate the translation of those databases to RDF are crucial. One approach, taken by a number of researchers, is to directly map the SQL schema to an equivalent Web Ontology Language (OWL) or RDF Schema representation, which in turn, implies an RDF representation for the relational data. This paper reviews this research, and derives a consolidated, overarching set of translation rules expressible as a stratified Datalog program. We present all the possible key combinations in an SQL schema and consider their implied semantic properties. We review the approaches and characterize them with respect to the scope of their coverage of SQL constructs.


2019 ◽  
Vol 8 (3) ◽  
pp. 3820-3827

This study focuses on the enhancing the potential of the e-commerce websites with various Semantic web technologies. The involvement of semantic enrichment gives more meaning to the data and makes content more easily discoverable by both search engines and users. Daily thousands of people try searching for a product they are willing to buy and due to the system inefficiency, customers waste a lot of their precious time and resources and also there are a lot of problems with the current e-commerce systems. So, semantic web has certain technologies/languages specifically established for data, i.e. RDF (Resource description framework), OWL (Web ontology language) and XML, etc. which can help overcome the problems and accelerate the business to a higher level where e-commerce websites will be playing an important role.


Author(s):  
Csilla Farkas

This chapter investigates the threat of unwanted Semantic Web inferences. We survey the current efforts to detect and remove unwanted inferences, identify research gaps, and recommend future research directions. We begin with a brief overview of Semantic Web technologies and reasoning methods, followed by a description of the inference problem in traditional databases. In the context of the Semantic Web, we study two types of inferences: (1) entailments defined by the formal semantics of the Resource Description Framework (RDF) and the RDF Schema (RDFS) and (2) inferences supported by semantic languages like the Web Ontology Language (OWL). We compare the Semantic Web inferences to the inferences studied in traditional databases. We show that the inference problem exists on the Semantic Web and that existing security methods do not fully prevent indirect data disclosure via inference channels.


2010 ◽  
Vol 38 ◽  
pp. 535-568 ◽  
Author(s):  
J. De Bruijn ◽  
S. Heymans

The Resource Description Framework (RDF) is a Semantic Web standard that provides a data language, simply called RDF, as well as a lightweight ontology language, called RDF Schema. We investigate embeddings of RDF in logic and show how standard logic programming and description logic technology can be used for reasoning with RDF. We subsequently consider extensions of RDF with datatype support, considering D entailment, defined in the RDF semantics specification, and D* entailment, a semantic weakening of D entailment, introduced by ter Horst. We use the embeddings and properties of the logics to establish novel upper bounds for the complexity of deciding entailment. We subsequently establish two novel lower bounds, establishing that RDFS entailment is PTime-complete and that simple-D entailment is coNP-hard, when considering arbitrary datatypes, both in the size of the entailing graph. The results indicate that RDFS may not be as lightweight as one may expect.


2018 ◽  
Vol 2 ◽  
pp. e25614 ◽  
Author(s):  
Florian Pellen ◽  
Sylvain Bouquin ◽  
Isabelle Mougenot ◽  
Régine Vignes-Lebbe

Xper3 (Vignes Lebbe et al. 2016) is a collaborative knowledge base publishing platform that, since its launch in november 2013, has been adopted by over 2 thousand users (Pinel et al. 2017). This is mainly due to its user friendly interface and the simplicity of its data model. The data are stored in MySQL Relational DBs, but the exchange format uses the TDWG standard format SDD (Structured Descriptive DataHagedorn et al. 2005). However, each Xper3 knowledge base is a closed world that the author(s) may or may not share with the scientific community or the public via publishing content and/or identification key (Kopfstein 2016). The explicit taxonomic, geographic and phenotypic limits of a knowledge base are not always well defined in the metadata fields. Conversely terminology vocabularies, such as Phenotype and Trait Ontology PATO and the Plant Ontology PO, and software to edit them, such as Protégé and Phenoscape, are essential in the semantic web, but difficult to handle for biologist without computer skills. These ontologies constitute open worlds, and are expressed themselves by RDF triples (Resource Description Framework). Protégé offers vizualisation and reasoning capabilities for these ontologies (Gennari et al. 2003, Musen 2015). Our challenge is to combine the user friendliness of Xper3 with the expressive power of OWL (Web Ontology Language), the W3C standard for building ontologies. We therefore focused on analyzing the representation of the same taxonomic contents under Xper3 and under different models in OWL. After this critical analysis, we chose a description model that allows automatic export of SDD to OWL and can be easily enriched. We will present the results obtained and their validation on two knowledge bases, one on parasitic crustaceans (Sacculina) and the second on current ferns and fossils (Corvez and Grand 2014). The evolution of the Xper3 platform and the perspectives offered by this link with semantic web standards will be discussed.


Author(s):  
Franck Cotton ◽  
Daniel Gillman

Linked Open Statistical Metadata (LOSM) is Linked Open Data (LOD) applied to statistical metadata. LOD is a model for identifying, structuring, interlinking, and querying data published directly on the web. It builds on the standards of the semantic web defined by the W3C. LOD uses the Resource Description Framework (RDF), a simple data model expressing content as predicates linking resources between them or with literal properties. The simplicity of the model makes it able to represent any data, including metadata. We define statistical data as data produced through some statistical process or intended for statistical analyses, and statistical metadata as metadata describing statistical data. LOSM promotes discovery and the meaning and structure of statistical data in an automated way. Consequently, it helps with understanding and interpreting data and preventing inadequate or flawed visualizations for statistical data. This enhances statistical literacy and efforts at visualizing statistics.


Author(s):  
Kaleem Razzaq Malik ◽  
Tauqir Ahmad

This chapter will clearly show the need for better mapping techniques for Relational Database (RDB) all the way to Resource Description Framework (RDF). This includes coverage of each data model limitations and benefits for getting better results. Here, each form of data being transform has its own importance in the field of data science. As RDB is well known back end storage for information used to many kinds of applications; especially the web, desktop, remote, embedded, and network-based applications. Whereas, EXtensible Markup Language (XML) in the well-known standard for data for transferring among all computer related resources regardless of their type, shape, place, capability and capacity due to its form is in application understandable form. Finally, semantically enriched and simple of available in Semantic Web is RDF. This comes handy when with the use of linked data to get intelligent inference better and efficient. Multiple Algorithms are built to support this system experiments and proving its true nature of the study.


Author(s):  
Giorgos Laskaridis ◽  
Konstantinos Markellos ◽  
Penelope Markellou ◽  
Angeliki Panayiotaki ◽  
Athanasios Tsakalidis

The emergence of semantic Web opens up boundless new opportunities for e-business. According to Tim Berners-Lee, Hendler, and Lassila (2001), “the semantic Web is an extension of the current Web in which information is given well-defined meaning, better enabling computers and people to work in cooperation”. A more formal definition by W3C (2001) refers that, “the semantic Web is the representation of data on the World Wide Web. It is a collaborative effort led by W3C with participation from a large number of researchers and industrial partners. It is based on the resource description framework (RDF), which integrates a variety of applications using eXtensible Markup Language (XML) for syntax and uniform resource identifiers (URIs) for naming”. The capability of the semantic Web to add meaning to information, stored in such way that it can be searched and processed as well as recent advances in semantic Web-based technologies provide the mechanisms for semantic knowledge representation, exchange and collaboration of e-business processes and applications.


Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 84 ◽  
Author(s):  
Dominik Tomaszuk ◽  
David Hyland-Wood

Resource Description Framework (RDF) can seen as a solution in today’s landscape of knowledge representation research. An RDF language has symmetrical features because subjects and objects in triples can be interchangeably used. Moreover, the regularity and symmetry of the RDF language allow knowledge representation that is easily processed by machines, and because its structure is similar to natural languages, it is reasonably readable for people. RDF provides some useful features for generalized knowledge representation. Its distributed nature, due to its identifier grounding in IRIs, naturally scales to the size of the Web. However, its use is often hidden from view and is, therefore, one of the less well-known of the knowledge representation frameworks. Therefore, we summarise RDF v1.0 and v1.1 to broaden its audience within the knowledge representation community. This article reviews current approaches, tools, and applications for mapping from relational databases to RDF and from XML to RDF. We discuss RDF serializations, including formats with support for multiple graphs and we analyze RDF compression proposals. Finally, we present a summarized formal definition of RDF 1.1 that provides additional insights into the modeling of reification, blank nodes, and entailments.


Sign in / Sign up

Export Citation Format

Share Document