scholarly journals Machine learning models of problem space navigation: The influence of gender

2005 ◽  
Vol 2 (2) ◽  
pp. 83-98 ◽  
Author(s):  
Ron Stevens ◽  
Amy Soller

We have developed models of how problem spaces are navigated as male and female secondary school, university, and medical students engage in repetitive complex problem solving. The strategies that students used when solving problem-solving simulations were first classified with self-organizing artificial neural networks resulting in problem solving strategy maps. Next, learning trajectories were developed from sequences of performances by Hidden Markov Modeling that stochastically described students' progress in understanding different domains. Across middle school to medical school there were few gender differences in the proportion of cases solved; however, six of the seven problem sets showed significant gender differences in both the strategies used (ANN classifications) as well as the in the HMM models of progress. These results were extended through a detailed analysis of one problem set. For this high school / university problem set, gender differences were seen in how the problems were encoded consolidated and retrieved. These studies suggest that strategic problem solving differences are common across gender, and would be masked by simply looking at the outcome of the problem solving event.

2014 ◽  
Vol 29 ◽  
pp. 18-29 ◽  
Author(s):  
Sascha Wüstenberg ◽  
Samuel Greiff ◽  
Gyöngyvér Molnár ◽  
Joachim Funke

2009 ◽  
Vol 23 (2) ◽  
pp. 129-138 ◽  
Author(s):  
Florian Schmidt-Weigand ◽  
Martin Hänze ◽  
Rita Wodzinski

How can worked examples be enhanced to promote complex problem solving? N = 92 students of the 8th grade attended in pairs to a physics problem. Problem solving was supported by (a) a worked example given as a whole, (b) a worked example presented incrementally (i.e. only one solution step at a time), or (c) a worked example presented incrementally and accompanied by strategic prompts. In groups (b) and (c) students self-regulated when to attend to the next solution step. In group (c) each solution step was preceded by a prompt that suggested strategic learning behavior (e.g. note taking, sketching, communicating with the learning partner, etc.). Prompts and solution steps were given on separate sheets. The study revealed that incremental presentation lead to a better learning experience (higher feeling of competence, lower cognitive load) compared to a conventional presentation of the worked example. However, only if additional strategic learning behavior was prompted, students remembered the solution more correctly and reproduced more solution steps.


2016 ◽  
Vol 32 (4) ◽  
pp. 298-306 ◽  
Author(s):  
Samuel Greiff ◽  
Katarina Krkovic ◽  
Jarkko Hautamäki

Abstract. In this study, we explored the network of relations between fluid reasoning, working memory, and the two dimensions of complex problem solving, rule knowledge and rule application. In doing so, we replicated the recent study by Bühner, Kröner, and Ziegler (2008) and the structural relations investigated therein [ Bühner, Kröner, & Ziegler, (2008) . Working memory, visual-spatial intelligence and their relationship to problem-solving. Intelligence, 36, 672–680]. However, in the present study, we used different assessment instruments by employing assessments of figural, numerical, and verbal fluid reasoning, an assessment of numerical working memory, and a complex problem solving assessment using the MicroDYN approach. In a sample of N = 2,029 Finnish sixth-grade students of which 328 students took the numerical working memory assessment, the findings diverged substantially from the results reported by Bühner et al. Importantly, in the present study, fluid reasoning was the main source of variation for rule knowledge and rule application, and working memory contributed only a little added value. Albeit generally in line with previously conducted research on the relation between complex problem solving and other cognitive abilities, these findings directly contrast the results of Bühner et al. (2008) who reported that only working memory was a source of variation in complex problem solving, whereas fluid reasoning was not. Explanations for the different patterns of results are sought, and implications for the use of assessment instruments and for research on interindividual differences in complex problem solving are discussed.


Author(s):  
Atma Murni ◽  
Rini Dian Anggraini ◽  
Sakur

Tujuan dari penelitian ini adalah untuk mengetahui pengaruh penerapan Strategi Pemecahan Masalah dalam pembelajaran kooperatif pendekatan struktural Think Pair Share (TPS) terhadap hasil belajar matematika siswa kelas VIII SMP Negeri 14 Pekanbaru. Penelitian ini menggunakan desain penelitian pra eksperimental menggunakan desain penelitian perbandingan kelompok statis. Instrumen pengumpulan data meliputi tes keterampilan mahematika awal dan tes hasil belajar matematika. Data dianalisis menggunakan uji t. Hasil penelitian ini menunjukkan bahwa terdapat pengaruh strategi pemecahan masalah dalam pembelajaran kooperatif pendekatan struktural Think Pair Share (TPS) terhadap hasil belajar matematika siswa kelas VIII SMP Negeri 14 Pekanbaru.   The aim of this study was to know the influence of Problem Solving Strategy implementation in cooperative learning of structural approach Think Pair Share (TPS) to mathematics learning outcome of VIII class students of SMP Negeri 14 Pekanbaru. This study use pre experimental research design using The static group comparison research design. The instruments of  data collection include early mahematics skills test and mathematics learning outcome test. Data were analyzed using t test. The result of this study showed that there is influence of problem solving strategy in cooperative learning of structural approach Think Pair Share (TPS)  to mathematics learning outcome  of  VIII class students of SMP Negeri 14 Pekanbaru


Author(s):  
Liska Yanti Pane ◽  
Kamid Kamid ◽  
Asrial Asrial

This research aims to describe logical thinking process of a logical-mathematical intelligence student. We employ qualitative method to disclose the subject’s learning process. Data are collected by interview and modified think aloud methods. The results show that subject has capability to find and organize problems and data correctly. Subject describes conditions that are needed to do the steps of problem solving strategy. The steps are done systematically until the end of problem solving process.


2021 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
André Kretzschmar ◽  
Stephan Nebe

In order to investigate the nature of complex problem solving (CPS) within the nomological network of cognitive abilities, few studies have simultantiously considered working memory and intelligence, and results are inconsistent. The Brunswik symmetry principle was recently discussed as a possible explanation for the inconsistent findings because the operationalizations differed greatly between the studies. Following this assumption, 16 different combinations of operationalizations of working memory and fluid reasoning were examined in the present study (N = 152). Based on structural equation modeling with single-indicator latent variables (i.e., corrected for measurement error), it was found that working memory incrementally explained CPS variance above and beyond fluid reasoning in only 2 of 16 conditions. However, according to the Brunswik symmetry principle, both conditions can be interpreted as an asymmetrical (unfair) comparison, in which working memory was artificially favored over fluid reasoning. We conclude that there is little evidence that working memory plays a unique role in solving complex problems independent of fluid reasoning. Furthermore, the impact of the Brunswik symmetry principle was clearly demonstrated as the explained variance in CPS varied between 4 and 31%, depending on which operationalizations of working memory and fluid reasoning were considered. We argue that future studies investigating the interplay of cognitive abilities will benefit if the Brunswik principle is taken into account.


Sign in / Sign up

Export Citation Format

Share Document