scholarly journals On fixed point results for Matkowski type of mappings in G-metric spaces

Filomat ◽  
2015 ◽  
Vol 29 (10) ◽  
pp. 2301-2309 ◽  
Author(s):  
Lj. Gajic ◽  
M. Stojakovic

The main result of this paper is a fixed point theorem for Matkowski type mapping with contractive iterate at a point in a class of G-metric spaces. Our result unifies, generalizes and complements some well known results in metric and G-metric spaces.

Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1433
Author(s):  
Ion Marian Olaru ◽  
Nicolae Adrian Secelean

In this paper, we introduce a new contraction-type mapping and provide a fixed-point theorem which generalizes and improves some existing results in the literature. Thus, we prove that the Boyd and Wong theorem (1969) and, more recently, the fixed-point results due to Wardowski (2012), Turinici (2012), Piri and Kumam (2016), Secelean (2016), Proinov (2020), and others are consequences of our main result. An application in integral equations and some illustrative examples are indicated.


2014 ◽  
Vol 30 (1) ◽  
pp. 63-70
Author(s):  
SEONG-HOON CHO ◽  

In this paper, we introduce the notion of Ciric-Berinde type almost set-valued contraction mappings and give a ´ fixed point theorem for these mappings in orbitally complete metric spaces.


2016 ◽  
Vol 2017 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Muhammad Usman Ali ◽  
◽  
Tayyab Kamran ◽  
Mihai Postolache ◽  
◽  
...  

Filomat ◽  
2017 ◽  
Vol 31 (11) ◽  
pp. 3295-3305 ◽  
Author(s):  
Antonella Nastasi ◽  
Pasquale Vetro

Motivated by a problem concerning multi-valued mappings posed by Reich [S. Reich, Some fixed point problems, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 57 (1974) 194-198] and a paper of Jleli and Samet [M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. 2014:38 (2014) 1-8], we consider a new class of multi-valued mappings that satisfy a ?-contractive condition in complete metric spaces and prove some fixed point theorems. These results generalize Reich?s and Mizoguchi-Takahashi?s fixed point theorems. Some examples are given to show the usability of the obtained results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Badr Alqahtani ◽  
Sara Salem Alzaid ◽  
Andreea Fulga ◽  
Seher Sultan Yeşilkaya

AbstractIn this paper, we aim to discuss the common fixed point of Proinov type mapping via simulation function. The presented results not only generalize, but also unify the corresponding results in this direction. We also consider an example to indicate the validity of the obtained results.


2005 ◽  
Vol 2005 (5) ◽  
pp. 789-801
Author(s):  
Bijendra Singh ◽  
Shishir Jain ◽  
Shobha Jain

Rhoades (1996) proved a fixed point theorem in a boundedD-metric space for a contractive self-map with applications. Here we establish a more general fixed point theorem in an unboundedD-metric space, for two self-maps satisfying a general contractive condition with a restricted domain ofxandy. This has been done by using the notion of semicompatible maps inD-metric space. These results generalize and improve the results of Rhoades (1996), Dhage et al. (2000), and Veerapandi and Rao (1996). These results also underline the necessity and importance of semicompatibility in fixed point theory ofD-metric spaces. All the results of this paper are new.


Sign in / Sign up

Export Citation Format

Share Document