scholarly journals Topological properties of a pair of relation-based approximation operators

Filomat ◽  
2017 ◽  
Vol 31 (19) ◽  
pp. 6175-6183
Author(s):  
Yan-Lan Zhang ◽  
Chang-Qing Li

Rough set theory is an important tool for data mining. Lower and upper approximation operators are two important basic concepts in the rough set theory. The classical Pawlak rough approximation operators are based on equivalence relations and have been extended to relation-based generalized rough approximation operators. This paper presents topological properties of a pair of relation-based generalized rough approximation operators. A topology is induced by the pair of generalized rough approximation operators from an inverse serial relation. Then, connectedness, countability, separation property and Lindel?f property of the topological space are discussed. The results are not only beneficial to obtain more properties of the pair of approximation operators, but also have theoretical and actual significance to general topology.

Filomat ◽  
2018 ◽  
Vol 32 (9) ◽  
pp. 3129-3141
Author(s):  
Yan-Lan Zhang ◽  
Chang-Qing Li

Rough set theory is one of important models of granular computing. Lower and upper approximation operators are two important basic concepts in rough set theory. The classical Pawlak approximation operators are based on partition and have been extended to covering approximation operators. Covering is one of the fundamental concepts in the topological theory, then topological methods are useful for studying the properties of covering approximation operators. This paper presents topological properties of a type of granular based covering approximation operators, which contains seven pairs of approximation operators. Then, topologies are induced naturally by the seven pairs of covering approximation operators, and the topologies are just the families of all definable subsets about the covering approximation operators. Binary relations are defined from the covering to present topological properties of the topological spaces, which are proved to be equivalence relations. Moreover, connectedness, countability, separation property and Lindel?f property of the topological spaces are discussed. The results are not only beneficial to obtain more properties of the pairs of covering approximation operators, but also have theoretical and actual significance to general topology.


Author(s):  
Wei-Zhi Wu ◽  
Wen-Xiu Zhang

Rough set theory is one of the most advanced areas popularizing GrC. The basic notions in rough set theory are the lower and upper approximation operators. A rough set algebra is a set algebra with two additional lower and upper approximation operators. In this chapter, we analyze relation based rough set algebras in both crisp and fuzzy environments. We first review the constructive definitions of generalized crisp rough approximation operators, rough fuzzy approximation operators, and fuzzy rough approximation operators. We then present the essential properties of the corresponding lower and upper approximation operators. We also characterize the approximation operators by using the axiomatic approach. Finally, the connection between fuzzy rough set algebras and fuzzy topological spaces is established.


Author(s):  
Zhongguang Fu ◽  
Tao Jin ◽  
Kun Yang

Rough set theory is a powerful tool in deal with vagueness and uncertainty. It is particularly suitable to discover hidden and potentially useful knowledge in data and can be used to reduce features and extract rules. This paper introduces the basic concepts and fundamental elements of the rough set theory. A reduction algorithm that integrates a priori with significance is proposed to illustrate how the rough set theory could be used to extract fault features of the condenser in a power plant. Two testing examples are then presented to demonstrate the effectiveness of the theory in fault diagnosis.


2011 ◽  
Vol 282-283 ◽  
pp. 287-290
Author(s):  
Hai Dong Zhang ◽  
Yan Ping He

As a suitable mathematical model to handle partial knowledge in data bases, rough set theory is emerging as a powerful theory and has been found its successive applications in the fields of artificial intelligence such as pattern recognition, machine learning, etc. In the paper, a vague relation is first defined, which is the extension of fuzzy relation. Then a new pair of lower and upper generalized rough approximation operators based on the vague relation is first proposed by us. Finally, the representations of vague rough approximation operators are presented.


Author(s):  
Benjamin Griffiths

Rough Set Theory (RST), since its introduction in Pawlak (1982), continues to develop as an effective tool in data mining. Within a set theoretical structure, its remit is closely concerned with the classification of objects to decision attribute values, based on their description by a number of condition attributes. With regards to RST, this classification is through the construction of ‘if .. then ..’ decision rules. The development of RST has been in many directions, amongst the earliest was with the allowance for miss-classification in the constructed decision rules, namely the Variable Precision Rough Sets model (VPRS) (Ziarko, 1993), the recent references for this include; Beynon (2001), Mi et al. (2004), and Slezak and Ziarko (2005). Further developments of RST have included; its operation within a fuzzy environment (Greco et al., 2006), and using a dominance relation based approach (Greco et al., 2004). The regular major international conferences of ‘International Conference on Rough Sets and Current Trends in Computing’ (RSCTC, 2004) and ‘International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing’ (RSFDGrC, 2005) continue to include RST research covering the varying directions of its development. This is true also for the associated book series entitled ‘Transactions on Rough Sets’ (Peters and Skowron, 2005), which further includes doctoral theses on this subject. What is true, is that RST is still evolving, with the eclectic attitude to its development meaning that the definitive concomitant RST data mining techniques are still to be realised. Grzymala-Busse and Ziarko (2000), in a defence of RST, discussed a number of points relevant to data mining, and also made comparisons between RST and other techniques. Within the area of data mining and the desire to identify relationships between condition attributes, the effectiveness of RST is particularly pertinent due to the inherent intent within RST type methodologies for data reduction and feature selection (Jensen and Shen, 2005). That is, subsets of condition attributes identified that perform the same role as all the condition attributes in a considered data set (termed ß-reducts in VPRS, see later). Chen (2001) addresses this, when discussing the original RST, they state it follows a reductionist approach and is lenient to inconsistent data (contradicting condition attributes - one aspect of underlying uncertainty). This encyclopaedia article describes and demonstrates the practical application of a RST type methodology in data mining, namely VPRS, using nascent software initially described in Griffiths and Beynon (2005). The use of VPRS, through its relative simplistic structure, outlines many of the rudiments of RST based methodologies. The software utilised is oriented towards ‘hands on’ data mining, with graphs presented that clearly elucidate ‘veins’ of possible information identified from ß-reducts, over different allowed levels of missclassification associated with the constructed decision rules (Beynon and Griffiths, 2004). Further findings are briefly reported when undertaking VPRS in a resampling environment, with leave-one-out and bootstrapping approaches adopted (Wisnowski et al., 2003). The importance of these results is in the identification of the more influential condition attributes, pertinent to accruing the most effective data mining results.


Author(s):  
Tarum Bhaskar ◽  
Narasimha Kamath B.

Intrusion detection system (IDS) is now becoming an integral part of the network security infrastructure. Data mining tools are widely used for developing an IDS. However, this requires an ability to find the mapping from the input space to the output space with the help of available data. Rough sets and neural networks are the best known data mining tools to analyze data and help solve this problem. This chapter proposes a novel hybrid method to integrate rough set theory, genetic algorithm (GA), and artificial neural network. Our method consists of two stages: First, rough set theory is applied to find the reduced dataset. Second, the results are used as inputs for the neural network, where a GA-based learning approach is used to train the intrusion detection system. The method is characterized not only by using attribute reduction as a pre-processing technique of an artificial neural network but also by an improved learning algorithm. The effectiveness of the proposed method is demonstrated on the KDD cup data.


Author(s):  
Nikos Pelekis ◽  
Babis Theodoulidis ◽  
Ioannis Kopanakis ◽  
Yannis Theodoridis

QOSP Quality of Service Open Shortest Path First based on QoS routing has been recognized as a missing piece in the evolution of QoS-based services in the Internet. Data mining has emerged as a tool for data analysis, discovery of new information, and autonomous decision-making. This paper focuses on routing algorithms and their appli-cations for computing QoS routes in OSPF protocol. The proposed approach is based on a data mining approach using rough set theory, for which the attribute-value system about links of networks is created from network topology. Rough set theory offers a knowledge discovery approach to extracting routing-decisions from attribute set. The extracted rules can then be used to select significant routing-attributes and make routing-selections in routers. A case study is conducted to demonstrate that rough set theory is effective in finding the most significant attribute set. It is shown that the algorithm based on data mining and rough set offers a promising approach to the attribute-selection prob-lem in internet routing.


Sign in / Sign up

Export Citation Format

Share Document