scholarly journals Bayesian and non-Bayesian estimation of four-parameter of bivariate discrete inverse Weibull distribution with applications to model failure times, football and biological data

Filomat ◽  
2020 ◽  
Vol 34 (8) ◽  
pp. 2511-2531 ◽  
Author(s):  
M.S. Eliwa ◽  
M. El-Morshedy

In this paper we have considered one model, namely the bivariate discrete inverse Weibull distribution, which has not been considered in the statistical literature yet. The proposed model is a discrete analogue of Marshall-Olkin inverse Weibull distribution. Some of its important statistical properties are studied. Maximum likelihood and Bayesian methods are used to estimate the model parameters. A detailed simulation study is carried out to examine the bias and mean square error of maximum likelihood and Bayesian estimators. Finally, three real data sets are analyzed to illustrate the importance of the proposedmodel.

2019 ◽  
Vol 8 (2) ◽  
pp. 146
Author(s):  
Saeed Al-mualim

A new extension of the Poisson Inverse Weibull distribution is derived and studied in details. Number of structural mathematical properties are derived. We used the well-known maximum likelihood method for estimating the model parameters. The new model is applied for modeling some real data sets to prove its importance and flexibility empirically.


2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


Author(s):  
Salman Abbas ◽  
Gamze Ozal ◽  
Saman Hanif Shahbaz ◽  
Muhammad Qaiser Shahbaz

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone family of distributions. We have studied some statistical properties of the proposed distribution including quantile function, moment generating function, probability generating function, raw moments, incomplete moments, probability, weighted moments, Rayeni and q th entropy. The have obtained numerical values of the various measures to see the eect of model parameters. Distribution of of order statistics for the proposed model has also been obtained. The estimation of the model parameters has been done by using maximum likelihood method. The eectiveness of proposed model is analyzed by means of a real data sets. Finally, some concluding remarks are given.


Author(s):  
Umar Yusuf Madaki ◽  
Mohd Rizam Abu Bakar ◽  
Laba Handique

We proposed a so-called Beta Kumaraswamy Burr Type X distribution which gives the extension of the Kumaraswamy-G class of family distribution. Some properties of this proposed model were provided, like: the expansion of densities and quantile function. We considered the Bayes and maximum likelihood methods to estimate the parameters and also simulate the model parameters to validate the methods based on different set of true values. Some real data sets were employed to show the usefulness and flexibility of the model which serves as generalization to many sub-models in the field of engineering, medical, survival and reliability analysis.


Author(s):  
Umar Yusuf Madaki ◽  
Mohd Rizam Abu Bakar ◽  
Laba Handique

We proposed a so-called Beta Kumaraswamy Burr Type X distribution which gives the extension of the Kumaraswamy-G class of family distribution. Some properties of this proposed model were provided, like: the expansion of densi- ties and quantile function. We considered the Bayes and maximum likelihood methods to estimate the parameters and also simulate the model parameters to validate the methods based on dierent set of true values. Some real data sets were employed to show the usefulness and  exibility of the model which serves as generalization to many sub-models in the elds of engineering, medical, survival and reliability analysis.


2019 ◽  
Vol 8 (2) ◽  
pp. 70 ◽  
Author(s):  
Mustafa C. Korkmaz ◽  
Emrah Altun ◽  
Haitham M. Yousof ◽  
G.G. Hamedani

In this study, a new flexible family of distributions is proposed with its statistical properties as well as some useful characterizations. The maximum likelihood method is used to estimate the unknown model parameters by means of two simulation studies. A new regression model is proposed based on a special member of the proposed family called, the log odd power Lindley Weibull distribution. Residual analysis is conducted to evaluate the model assumptions. Four applications to real data sets are given to demonstrate the usefulness of the proposed model.


2017 ◽  
Vol 2 (4) ◽  
pp. 68-75
Author(s):  
Zubair Ahmad ◽  
Brikhna Iqbal

In this article, a four parameter generalization of the flexible Weibull extension distribution so-called generalized flexible Weibull extension distribution is studied. The proposed model belongs to T-X family of distributions proposed by Alzaatreh et al. [5]. The suggested model is much flexible and accommodates increasing, unimodal and modified unimodal failure rates. A comprehensive expression of the numerical properties and the estimates of the model parameters are obtained using maximum likelihood method. By appropriate choice of parameter values the new model reduces to four sub models. The proposed model is illustrated by means of three real data sets.


2017 ◽  
Vol 2 (6) ◽  
pp. 7-13
Author(s):  
Zubair Ahmad ◽  
Zawar Hussain

The present paper is devoted to introduce a four-parameter modification of new flexible Weibull distribution. The proposed model will be called modified new flexible Weibull distribution, able to model lifetime phenomena with increasing or bathtub-shaped failure rates. Some of its mathematical properties will be studied. The approach of maximum likelihood will be used for estimating the model parameters. A brief mathematical description for the reliability function will also be discussed. The usefulness of the proposed distribution will be illustrated by an application to a real data set.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Sandeep Kumar Maurya ◽  
Sanjay K Singh ◽  
Umesh Singh

A one parameter right skewed, upside down bathtub type, heavy-tailed distribution is derived. Various statistical properties and maximum likelihood approaches for estimation purpose are studied. Five different real data sets with four different models are considered to illustrate the suitability of the proposed model.


Author(s):  
Fiaz Ahmad Bhatti ◽  
G. G. Hamedani ◽  
Haitham M. Yousof ◽  
Azeem Ali ◽  
Munir Ahmad

A flexible lifetime distribution with increasing, decreasing, inverted bathtub and modified bathtub hazard rate called Modified Burr XII-Inverse Weibull (MBXII-IW) is introduced and studied. The density function of MBXII-IW is exponential, left-skewed, right-skewed and symmetrical shaped.  Descriptive measures on the basis of quantiles, moments, order statistics and reliability measures are theoretically established. The MBXII-IW distribution is characterized via different techniques. Parameters of MBXII-IW distribution are estimated using maximum likelihood method. The simulation study is performed to illustrate the performance of the maximum likelihood estimates (MLEs). The potentiality of MBXII-IW distribution is demonstrated by its application to real data sets: serum-reversal times and quarterly earnings.


Sign in / Sign up

Export Citation Format

Share Document