scholarly journals Memory chips and units radiation tolerance dependence on supply voltage during irradiation and test

2018 ◽  
Vol 31 (1) ◽  
pp. 131-140
Author(s):  
Andrey Petrov ◽  
Alexander Nikiforov ◽  
Anna Boruzdina ◽  
Anastasia Ulanova ◽  
Andrey Yanenko

In this work we investigate the influence of various memory chips supply voltage on their sensitivity to the radiation environment. The main physical mechanisms responsible for radiation-induced degradation at nominal, increased, and decreased supply voltage values are discussed. It is demonstrated that, depending on supply voltage value during irradiation and subsequent testing, device's tolerance to data corruption effects in memory circuits, single event latch-up (SEL) and hard errors induced by ionizing radiation can vary significantly. We also give some recommendations to perform radiation tests.

2004 ◽  
Vol 14 (02) ◽  
pp. 489-501
Author(s):  
JOHN D. CRESSLER

We present an overview of radiation effects in silicon-germanium heterojunction bipolar transistors ( SiGe HBT). We begin by reviewing SiGe HBTs, and then examine the impact of ionizing radiation on both the dc and ac performance of SiGe HBTs, the circuit-level impact of radiation-induced changes in the transistors, followed by single-event phenomena in SiGe HBT circuits. While ionizing radiation degrades both the dc and ac properties of SiGe HBTs, this degradation is remarkably minor, and is far better than that observed in even radiation-hardened conventional Si BJT technologies. This fact is particularly significant given that no intentional radiation hardening is needed to ensure this level of both device-level and circuit-level tolerance (typically multi-Mrad TID). SEU effects are pronounced in SiGe HBT circuits, as expected, but circuit-level mitigation schemes will likely be suitable to ensure adequate tolerance for many orbital missions. SiGe HBT technology thus offers many interesting possibilities for space-borne electronic systems.


Author(s):  
M. L. Knotek

Modern surface analysis is based largely upon the use of ionizing radiation to probe the electronic and atomic structure of the surfaces physical and chemical makeup. In many of these studies the ionizing radiation used as the primary probe is found to induce changes in the structure and makeup of the surface, especially when electrons are employed. A number of techniques employ the phenomenon of radiation induced desorption as a means of probing the nature of the surface bond. These include Electron- and Photon-Stimulated Desorption (ESD and PSD) which measure desorbed ionic and neutral species as they leave the surface after the surface has been excited by some incident ionizing particle. There has recently been a great deal of activity in determining the relationship between the nature of chemical bonding and its susceptibility to radiation damage.


2020 ◽  
Author(s):  
Xiang Yu ◽  
Minshu Li ◽  
Lin Zhu ◽  
Jingfei li ◽  
Guoli Zhang ◽  
...  

2019 ◽  
Vol 12 (3) ◽  
pp. 247-255 ◽  
Author(s):  
Dheyauldeen Shabeeb ◽  
Mansoor Keshavarz ◽  
Alireza Shirazi ◽  
Gholamreza Hassanzadeh ◽  
Mohammed Reza Hadian ◽  
...  

Background: Radiotherapy (RT) is a treatment method for cancer using ionizing radiation (IR). The interaction between IR with tissues produces free radicals that cause biological damages.As the largest organ in the human body, the skeletal muscles may be affected by detrimental effects of ionizing radiation. To eliminate these side effects, we used melatonin, a major product secreted by the pineal gland in mammals, as a radioprotective agent. Materials and Methods: For this study, a total of sixty male Wistar rats were used. They were allotted to 4 groups: control (C), melatonin (M), radiation (R) and melatonin + radiation (MR). Rats’ right hind legs were irradiated with 30 Gy single dose of gamma radiation, while 100 mg/kg of melatonin was given to them 30 minutes before irradiation and 5 mg/ kg once daily afternoon for 30 days. Five rats in each group were sacrificed 4, 12 and 20 weeks after irradiation for histological and biochemical examinations. Results: Our results showed radiation-induced biochemical, histological and electrophysiological changes in normal rats’ gastrocnemius muscle tissues. Biochemical analysis showed that malondialdehyde (MDA) levels significantly elevated in R group (P<0.001) and reduced significantly in M and MR groups after 4, 12, and 20 weeks (P<0.001), However, the activity of catalase (CAT) and superoxide dismutase(SOD)decreased in the R group and increased in M and MR groups for the same periods of time compared with the C group (P<0.001), while melatonin administration inverted these effects( P<0.001).Histopathological examination showed significant differences between R group for different parameters compared with other groups (P<0.001). However, the administration of melatonin prevented these effects(P<0.001). Electromyography (EMG) examination showed that the compound action potential (CMAP) value in the R group was significantly reduced compared to the effects in the C and M groups after 12 and 20 weeks (P<0.001). The administration of melatonin also reversed these effects (P<0.001). Conclusion: Melatonin can improve biochemical, electrophysiological and morphological features of irradiated gastrocnemius muscle tissues.Our recommendation is that melatonin should be administered in optimal dose. For effective protection of muscle tissues, and increased therapeutic ratio of radiation therapy, this should be done within a long period of time.


2021 ◽  
Vol 22 (3) ◽  
pp. 1418
Author(s):  
Elham Shahhoseini ◽  
Masao Nakayama ◽  
Terrence J. Piva ◽  
Moshi Geso

This study examined the effects of gold nanoparticles (AuNPs) and/or ionizing radiation (IR) on the viability and motility of human primary colon epithelial (CCD841) and colorectal adenocarcinoma (SW48) cells as well as human primary epidermal melanocytes (HEM) and melanoma (MM418-C1) cells. AuNPs up to 4 mM had no effect on the viability of these cell lines. The viability of the cancer cells was ~60% following exposure to 5 Gy. Exposure to 5 Gy X-rays or 1 mM AuNPs showed the migration of the cancer cells ~85% that of untreated controls, while co-treatment with AuNPs and IR decreased migration to ~60%. In the non-cancerous cell lines gap closure was enhanced by ~15% following 1 mM AuNPs or 5 Gy treatment, while for co-treatment it was ~22% greater than that for the untreated controls. AuNPs had no effect on cell re-adhesion, while IR enhanced only the re-adhesion of the cancer cell lines but not their non-cancerous counterparts. The addition of AuNPs did not enhance cell adherence. This different reaction to AuNPs and IR in the cancer and normal cells can be attributed to radiation-induced adhesiveness and metabolic differences between tumour cells and their non-cancerous counterparts.


Sign in / Sign up

Export Citation Format

Share Document