scholarly journals Heat generation during plunge stage in friction stir welding

2013 ◽  
Vol 17 (2) ◽  
pp. 489-496 ◽  
Author(s):  
Darko Veljic ◽  
Marko Rakin ◽  
Milenko Perovic ◽  
Bojan Medjo ◽  
Zoran Radakovic ◽  
...  

This paper deals with the heat generation in the Al alloy Al2024-T3 plate under different rotating speeds and plunge speeds during the plunge stage of friction stir welding (FSW). A three-dimensional finite element model (FEM) is developed in the commercial code ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and Coulomb?s Law of friction. The heat generation in FSW can be divided into two parts: frictional heat generated by the tool and heat generated by material deformation near the pin and the tool shoulder region. Numerical results obtained in this work indicate a more prominent influence from the friction-generated heat. The slip rate of the tool relative to the workpiece material is related to this portion of heat. The material velocity, on the other hand, is related to the heat generated by plastic deformation. Increasing the plunging speed of the tool decreases the friction-generated heat and increases the amount of deformation-generated heat, while increasing the tool rotating speed has the opposite influence on both heat portions. Numerical results are compared with the experimental ones, in order to validate the numerical model, and a good agreement is obtained.

2016 ◽  
Vol 20 (5) ◽  
pp. 1693-1701
Author(s):  
Alin Murariu ◽  
Darko Veljic ◽  
Dragana Barjaktarevic ◽  
Marko Rakin ◽  
Nenad Radovic ◽  
...  

The heat generated during friction stir welding (FSW) process depends on plastic deformation of the material and friction between the tool and the material. In this work, heat generation is analysed with respect to the material velocity around the tool in Al alloy Al2024-T351 plate. The slip rate of the tool relative to the workpiece material is related to the frictional heat generated. The material velocity, on the other hand, is related to the heat generated by plastic deformation. During the welding process, the slippage is the most pronounced on the front part of the tool shoulder. Also, it is higher on the retreating side than on the advancing side. Slip rate in the zone around the tool pin has very low values, almost negligible. In this zone, the heat generation from friction is very low, because the material is in paste-like state and subjected to intensive plastic deformation. The material flow velocity around the pin is higher in the zone around the root of the pin. In the radial direction, this quantity increases from the pin to the periphery of the tool shoulder.


2021 ◽  
pp. 186-186
Author(s):  
Darko Veljic ◽  
Marko Rakin ◽  
Aleksandar Sedmak ◽  
Nenad Radovic ◽  
Bojan Medjo ◽  
...  

The influence of friction stir welding (FSW) parameters on thermo-mechanical behaviour of the material during welding is analysed. An aluminium alloy is considered (Al 2024 T351), and different rotating speed and welding speed are applied. Finite element model consists of the plate (Al alloy), backing plate and welding tool, and it is formed and solved in software package Simulia Abaqus. The influence of the welding conditions on material behaviour is taken into account by application of the Johnson-Cook material model. The rotation of the tool affects the results: if increased, it contributes to an increase of friction-generated heat intensity. The other component of the generated heat, the plastic deformation of the material, is negligibly changed. When the welding speed is increased, the intensity of friction-generated heat decreases, while the heat generation due to plastic deforming increases. Combined, these two effects cause small change of the total heat generation. For the same welded joint length, the plate welded by lower speed will be heated more intensively. The changes of the heat generation influence both the temperature field and reaction force, which are also considered.


2016 ◽  
Vol 20 (1) ◽  
pp. 247-254
Author(s):  
Darko Veljic ◽  
Bojan Medjo ◽  
Marko Rakin ◽  
Zoran Radosavljevic ◽  
Nikola Bajic

Temperature, plastic strain and heat generation during the plunge stage of the friction stir welding (FSW) of high-strength aluminium alloys 2024 T3 and 2024 T351 are considered in this work. The plunging of the tool into the material is done at different rotating speeds. A three-dimensional finite element (FE) model for thermomechanical simulation is developed. It is based on arbitrary Lagrangian-Eulerian formulation, and Johnson-Cook material law is used for modelling of material behaviour. From comparison of the numerical results for alloys 2024 T3 and 2024 T351, it can be seen that the former has more intensive heat generation from the plastic deformation, due to its higher strength. Friction heat generation is only slightly different for the two alloys. Therefore, temperatures in the working plate are higher in the alloy 2024 T3 for the same parameters of the plunge stage. Equivalent plastic strain is higher for 2024 T351 alloy, and the highest values are determined under the tool shoulder and around the tool pin. For the alloy 2024 T3, equivalent plastic strain is the highest in the influence zone of the tool pin.


2014 ◽  
Vol 903 ◽  
pp. 200-205
Author(s):  
Irfan Hilmy ◽  
Erry Yulian Triblas Adesta ◽  
Muhammad Riza

Friction Stir Welding (FSW) is getting its popularity because it is considered as an environmentally friendly manufacturing. Homemade FSW tool to be attached to a conventional milling machine was designed and fabricated. Experimental investigation of FSW process of the Aluminum alloy work piece to observe its heat generation was performed. Since heat generation is the main objective in a FSW process, the importance of identification of heat generation performance in a welded specimen is paramount. Heat generation of a welded specimen during FSW was measured using infra red thermal camera. The limitation of the measurement is it only captured the heat generation at surrounding area and surface of the welded specimen. Therefore, the heat generation inside contact area could not be identified. To overcome this problem, a finite-element model of the FSW process was developed. A model consists of a solid model of half the welded specimen since the symmetrical behavior of the geometry and boundary condition was assumed. Heat transfer analysis of a solid body model of a work piece was computed. It was observed that FSW parameters which involved dominantly in the heat generation were spindle speed, feeding rate and normal force. The heat generation model of FSW process was validated with the one from the experimental investigation. Good agreement between the numerical and the experimental investigation result has been made.


2004 ◽  
Vol 449-452 ◽  
pp. 601-604 ◽  
Author(s):  
Won Bae Lee ◽  
Hyung Sun Jang ◽  
Yun Mo Yeon ◽  
Seung Boo Jung

The hardness distribution related to the precipitates behaviors as friction stir welded and PWHT (post weld heat treated) 6061 Al alloy have been investigated. Frictional heat and plastic flow during friction stir welding created a fine, eqiuaxed and elongated microstructure near the weld zone due to dynamic recovery and recrystallization. A softened region which had been formed near the weld zone couldn't be avoidable due to the dissolution and coarsening of the strengthening precipitates. PWHT (SHT+ Aging) homogeneously recovered the hardness distribution over that of the base metal without softening region, resulted from non-homogeneously distributed hardness only aging treated. 36ks aging followed by SHT gave a higher hardness overall weld than that of the base metal due to a higher density of the spherical shaped precipitate.;


Author(s):  
R Pramod ◽  
Vikram Kumar S Jain ◽  
S Mohan Kumar ◽  
B Girinath ◽  
A Rajesh Kannan ◽  
...  

The present work focused on welding aluminium alloy 5083 using the friction stir welding process. Suitable welding process parameters were identified to fabricate a defect-free butt joint with a tool rotational speed of 1600 rpm, traverse speed of 20 mm/min and tilt angle of 3°. The microstructure at the nugget zone, thermo mechanically affected zone, heat-affected zone and base metal zone are examined. Mechanical properties of the weldment exhibited promising results with an average joint efficiency and hardness of 75.70% and 94.0 ± 5.0 vickers hardness, respectively. Fractography revealed ductile mode of failure in base and weld metal tensile samples. Furthermore, a 3D thermomechanical finite element model was utilized to simulate the friction stir welding process using the selected process parameters. Arbitrary Lagrangian–Eulerian-based model aided in predicting residual stress distributions and thermal history during the friction stir welding process.


2012 ◽  
Vol 16 (2) ◽  
pp. 527-534 ◽  
Author(s):  
Darko Veljic ◽  
Milenko Perovic ◽  
Aleksandar Sedmak ◽  
Marko Rakin ◽  
Miroslav Trifunovic ◽  
...  

A coupled thermo-mechanical model was developed to study the temperature fields, the plunge force and the plastic deformations of Al alloy 2024-T351 under different rotating speed: 350, 400 and 450 rpm, during the friction stir welding (FSW) process. Three-dimensional FE model has been developed in ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and the Coulomb?s Law of friction. Numerical results indicate that the maximum temperature in the FSW process is lower than the melting point of the welding material. The temperature filed is approximately symmetrical along the welding line. A lower plastic strain region can be found near the welding tool in the trailing side on the bottom surface. With increasing rotation speed, the low plastic strain region is reduced. When the rotational speed is increased, the plunge force can be reduced. Regions with high equivalent plastic strains are observed which correspond to the nugget and the flow arm.


2015 ◽  
Vol 1095 ◽  
pp. 781-785
Author(s):  
Zhong Ke Zhang ◽  
Jun Peng ◽  
Xi Jing Wang

Friction stir welding (FSW) was a new solid-state metal-joining method and force played an important role in the weld forming. The study of dynamic stress field helped to understand the forming mechanism of FSW and residual stress after welding. Regarding FSW of aluminum alloy, this paper built the finite element model which was based on DEFORM-3D software and achieved numerical simulation of the dynamic stress field in the FSW process. The results indicate that the peak of stress field appeares in the front side of weld and distributed asymmetrically along the center of the weld; the axial force playes an important role to the distribution of stress field, the the distribution of stress field becomes more intensive as the downforce largen; the stress gradient of the advancing side of weld changes larger than that of the retreating side; the stress near the shoulder experiences twice peak.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1938
Author(s):  
Haifeng Yang ◽  
Hongyun Zhao ◽  
Xinxin Xu ◽  
Li Zhou ◽  
Huihui Zhao ◽  
...  

In this study, 2A14-T4 Al-alloy T-joints were prepared via stationary shoulder friction stir welding (SSFSW) technology where the stirring pin’s rotation speed was set as different values. In combination with the numerical simulation results, the macro-forming, microstructure, and mechanical properties of the joints under different welding conditions were analyzed. The results show that the thermal cycle curves in the SSFSW process are featured by a steep climb and slow decreasing variation trends. As the stirring pin’s rotation speed increased, the grooves on the weld surface became more obvious. The base and rib plates exhibit W- or N-shaped hardness distribution patterns. The hardness of the weld nugget zone (WNZ) was high but was lower than that of the base material. The second weld’s annealing effect contributed to the precipitation and coarsening of the precipitated phase in the first weld nugget zone (WNZ1). The hardness of the heat affect zone (HAZ) in the vicinity of the thermo-mechanically affected zone (TMAZ) dropped to the minimum. As the stirring pin's rotation speed increased, the tensile strengths of the base and rib plates first increased and then dropped. The base and rib plates exhibited ductile and brittle/ductile fracture patterns, respectively.


2012 ◽  
Vol 622-623 ◽  
pp. 323-329
Author(s):  
Ebtisam F. Abdel-Gwad ◽  
A. Shahenda ◽  
S. Soher

Friction stir welding (FSW) process is a solid state welding process in which the material being welded does not melt or recast. This process uses a non-consumable tool to generate frictional heat in the abutting surfaces. The welding parameters and tool pin profile play major roles in deciding the weld quality. In this investigation, an attempt has been made to understand effects of process parameters include rotation speeds, welding speeds, and pin diameters on al.uminum weldment using double shoulder tools. Thermal and tensile behavior responses were examined. In this direction temperatures distribution across the friction stir aluminum weldment were measured, besides tensile strength and ductility were recorded and evaluated compared with both single shoulder and aluminum base metal.


Sign in / Sign up

Export Citation Format

Share Document