scholarly journals Enhancing film cooling effectiveness in a gas turbine end-wall with a passive semi cylindrical trench

2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 2013-2023
Author(s):  
Duraisamy Ravi ◽  
Kanjikovil Parammasivam

Computational studies were carried out in the end-wall of a linear cascade, of chosen blade profile, which is provided with one row of cylindrical film cooling holes inclined at 30o to the end wall. The CO gas was used as the coolant supplied through the film holes, 2 maintaining a blowing ratio of 0.6. The film cooling hole row was positioned at the leading edge of the cascade. The mainstream fluid was air and based on its properties at the cascade inlet, the flow was found turbulent. A semi cylindrical trench was placed at two positions upstream of the cascade leading edge and three positions downstream of it. ANSYS FLUENT 15.0 was used to compute the film cooling effectiveness of the cascade endwall. Trench positioned at a distance of twice that of film hole diameter, was found to show a highest increase of area averaged effectiveness value by 30.4% over the baseline. Further to this, the influence of the trench diameter was carried out where the trench with diameter twice that of film hole diameter was found to show a 31.3% increase of cooling effectiveness over the baseline. Studies on the influence of blowing ratio showed a highest increment of cooling effectiveness value by 43.5% over the baseline a blowing ratio of 1.2.

Author(s):  
Luzeng Zhang ◽  
Juan Yin ◽  
Kevin Liu ◽  
Moon Hee-Koo

Flow fields near the turbine nozzle endwall are highly complex due to the passage vortices and endwall cross flows. Consequently, it is challenging to provide proper cooling to the endwall surfaces. An effective way to cool the endwall is to have film cooling holes forward of the leading edge, often called “inlet-film cooling”. This paper presents the results of an experimental investigation on how the film hole diameter affects the film effectiveness on nozzle endwall and associated phantom cooling effectiveness on airfoil suction side. The measurements were conducted in a high speed linear cascade, which consists of three nozzle vanes and four flow passages. Double staggered rows of film injections, which were located upstream from the nozzle leading edge, provided cooling to the contoured endwall surfaces. Film cooling effectiveness on the endwall surface and corresponding phantom cooling effectiveness on the airfoil suction side were measured separately with a Pressure Sensitive Paint (PSP) technique through the mass transfer analogy. Four different film hole diameters with the same injection angle and the same pitch to diameter ratio were studied for up to six different MFR’s (mass flow ratios). Two dimensional film effectiveness distributions on the endwall surface and two dimensional phantom cooling distributions on the airfoil suction side are presented. Film/phantom cooling effectiveness distributions are pitchwise/spanwise averaged along the axial direction and also presented. The results indicate that both the endwall film effectiveness and the suction side phantom cooling effectiveness increases with the hole diameter (as decreases in blowing ratio for a given MFR) up to a specific diameter, then starts decreasing. An optimal value of the film hole diameter (blowing ratio) for the given injection angle is also suggested based on current study.


Author(s):  
Sang Hyun Oh ◽  
Dong Hyun Lee ◽  
Kyung Min Kim ◽  
Moon Young Kim ◽  
Hyung Hee Cho

An experimental investigation is conducted on the cooling effectiveness of full-coverage film cooled wall with impingement jets. Film cooling plate is made of stainless steel, thus the adiabatic film cooling effectiveness and the cooling effect of impingement jet underneath the film cooling plate are comprised in the cooling effectiveness. Infra-red camera is used to measure the temperature of film cooled surfaces. Experiments are conducted with different film cooling hole angles, such as 35° and 90°. Diameters of both film cooling holes and impinging jet holes are 5 mm. The jet Reynolds number base on the hole diameter (Red) ranges from 3,000 to 5,000 and equivalent blowing ratios (M) varies from 0.3 to 0.5, respectively. The distance between the injection plate and the film cooling plate is 1, 3 and 5 times of the hole diameter. The streamwise and spanwise hole spacing to the hole diameter ratio (p/d) are 3 for both the film cooling hole plate and the impingement jet hole plate. The 35° angled film cooling hole arrangement shows higher film cooling effectiveness than the 90° film cooling hole arrangement. As the blowing ratio increases, the cooling effectiveness is enhanced for both the 35° almost constant regardless of H/d, while H/d = 1 shows a minimum value for the angled film cooling hole.


Author(s):  
Sanga Lee ◽  
Dong-Ho Rhee ◽  
Kwanjung Yee

In spite of a myriad of researches on the optimal shape of film cooling holes, only a few attempts have been made to optimize the hole arrangement for film cooling so far. Moreover, although the general scale of film cooling hole is so small that manufacturing tolerance has substantial effects on the cooling performance of turbine, the researches on this issue are even scarcer. If it is possible to obtain optimal hole arrangement which not only improve the film cooling performance but also is robust to the manufacturing tolerance, then overall cooling performance of a turbine would become more reliable and useful from the practical point of view. To this end, the present study proposed a robust design optimization procedure which takes the manufacturing uncertainties into account. The procedure was subsequently applied to the film cooling holes on high pressure turbine nozzle pressure side to obtain the robust array shape under the uncertainty of the manufacturing tolerance. First, the array of the holes was parameterized by 5 design variables using the newly suggested shape functions, and 2 representative factors were considered for the manufacturing tolerance of the film cooling hole. Probabilistic process that consists of Kriging surrogate model and Monte Carlo Simulation with descriptive sampling method was coupled with the design optimization process using Genetic Algorithm. Through this, film cooling hole array which shows the high performance, yet robust to the manufacturing tolerance was obtained, and the effects of the manufacturing tolerance on the cooling performance was carefully investigated. As a result, the region where the film cooling effectiveness is noticeable, as well as the maximum width of the variation of the film cooling effectiveness were reduced through optimization, and it is also confirmed that the tolerance of the holes near the leading edge is more influential to the cooling performance because the film cooling effectiveness is more sensitive to the manufacturing tolerance of the leading edge than that of the trailing edge.


2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Zhihong Gao ◽  
Je-Chin Han

The effect of film-hole geometry and angle on turbine blade leading edge film cooling has been experimentally studied using the pressure sensitive paint technique. The leading edge is modeled by a blunt body with a semicylinder and an after-body. Two film cooling designs are considered: a heavily film cooled leading edge featured with seven rows of film cooling holes and a moderately film cooled leading edge with three rows. For the seven-row design, the film holes are located at 0 deg (stagnation line), ±15 deg, ±30 deg, and ±45 deg on the model surface. For the three-row design, the film holes are located at 0 deg and ±30 deg. Four different film cooling hole configurations are applied to each design: radial angle cylindrical holes, compound angle cylindrical holes, radial angle shaped holes, and compound angle shaped holes. Testing was done in a low speed wind tunnel. The Reynolds number, based on mainstream velocity and diameter of the cylinder, is 100,900. The mainstream turbulence intensity is about 7% near of leading edge model and the turbulence integral length scale is about 1.5 cm. Five averaged blowing ratios are tested ranging from M=0.5 to M=2.0. The results show that the shaped holes provide higher film cooling effectiveness than the cylindrical holes, particularly at higher average blowing ratios. The radial angle holes give better effectiveness than the compound angle holes at M=1.0–2.0. The seven-row film cooling design results in much higher effectiveness on the leading edge region than the three-row design at the same average blowing ratio or same amount coolant flow.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Andrew F Chen ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

The combined effects of inlet purge flow and the slashface leakage flow on the film cooling effectiveness of a turbine blade platform were studied using the pressure-sensitive paint (PSP) technique. Detailed film cooling effectiveness distributions on the endwall were obtained and analyzed. Discrete cylindrical film cooling holes were arranged to achieve an improved coverage on the endwall. Backward injection was attempted by placing backward injection holes near the pressure side leading edge portion. Experiments were done in a five-blade linear cascade with an average turbulence intensity of 10.5%. The inlet and exit Mach numbers were 0.26 and 0.43, respectively. The inlet and exit mainstream Reynolds numbers based on the axial chord length of the blade were 475,000 and 720,000, respectively. The coolant-to-mainstream mass flow ratios (MFR) were varied from 0.5% and 0.75% to 1% for the purge flow. For the endwall film cooling holes and slashface leakage flow, blowing ratios (M) of 0.5, 1.0, and 1.5 were examined. Coolant-to-mainstream density ratios (DR) that range from 1.0 (close to low temperature experiments) to 1.5 and 2.0 (close to engine conditions) were also examined. The results provide the gas turbine engine designers a better insight into improved film cooling hole configurations as well as various parametric effects on endwall film cooling when the inlet (swirl) purge flow and slashface leakage flow were incorporated.


2018 ◽  
Vol 35 (2) ◽  
pp. 101-111 ◽  
Author(s):  
J. O. Dávalos ◽  
J. C. García ◽  
G. Urquiza ◽  
A. Huicochea ◽  
O. De Santiago

Abstract In this work, the area-averaged film cooling effectiveness (AAFCE) on a gas turbine blade leading edge was predicted by employing an artificial neural network (ANN) using as input variables: hole diameter, injection angle, blowing ratio, hole and columns pitch. The database used to train the network was built using computational fluid dynamics (CFD) based on a two level full factorial design of experiments. The CFD numerical model was validated with an experimental rig, where a first stage blade of a gas turbine was represented by a cylindrical specimen. The ANN architecture was composed of three layers with four neurons in hidden layer and Levenberg-Marquardt was selected as ANN optimization algorithm. The AAFCE was successfully predicted by the ANN with a regression coefficient R2<0.99 and a root mean square error RMSE=0.0038. The ANN weight coefficients were used to estimate the relative importance of the input parameters. Blowing ratio was the most influential parameter with relative importance of 40.36 % followed by hole diameter. Additionally, by using the ANN model, the relationship between input parameters was analyzed.


Author(s):  
Bo-lun Zhang ◽  
Li Zhang ◽  
Hui-ren Zhu ◽  
Jian-sheng Wei ◽  
Zhong-yi Fu

Film cooling performance of the double-wave trench was numerically studied to improve the film cooling characteristics. Double-wave trench was formed by changing the leading edge and trailing edge of transverse trench into cosine wave. The film cooling characteristics of transverse trench and double-wave trench were numerically studied using Reynolds Averaged Navier Stokes (RANS) simulations with realizable k-ε turbulence model and enhanced wall treatment. The film cooling effectiveness and heat transfer coefficient of double-wave trench at different trench width (W = 0.8D, 1.4D, 2.1D) conditions are investigated, and the distribution of temperature field and flow field were analyzed. The results show that double-wave trench effectively improves the film cooling effectiveness and the uniformity of jet at the downstream wall of the trench. The span-wise averaged film cooling effectiveness of the double-wave trench model increases 20–63% comparing with that of the transverse trench at high blowing ratio. The anti-counter-rotating vortices which can press the film on near-wall are formed at the downstream wall of the double-wave trench. With the double-wave trench width decreasing, the film cooling effectiveness gradually reduces at the hole center-line region of the downstream trench. With the increase of the blowing ratio, the span-wise averaged heat transfer coefficient increases. The span-wise averaged heat transfer coefficient of the double-wave trench with 0.8D and 2.1D trench width is higher than that of the double-wave trench with 1.4D trench width at the high blowing ratio conditions.


Author(s):  
Pingfan He ◽  
Dragos Licu ◽  
Martha Salcudean ◽  
Ian S. Gartshore

The effect of varying coolant density on film cooling effectiveness for a turbine blade-model was numerically investigated and compared with experimental data. This model had a semi-circular leading edge with four rows of laterally-inclined film cooling orifices positioned symmetrically about the stagnation line. A curvilinear coordinate-based CFD code was developed and used for the numerical investigation. The code used a domain segmentation strategy in conjunction with general curvilinear grids to model the complex blade configuration. A multigrid method was used to accelerate the convergence rate. The time-averaged, variable-density, Navier-Stokes equations together with the energy or scalar equation were solved. Turbulence closure was attained by the standard k–ε model with a near-wall k model. Either air or CO2 was used as coolant in three cases of injection through single rows and alternatively staggered double raws of holes. Two different blowing rates were investigated in each case and compared with experimental data. The experimental results were obtained using a wind tunnel model, and the mass/heat analogy was used to determine the film cooling effectiveness. The higher density of the carbon dioxide coolant (approximately 1.5 times the density of air) in the isothermal mass injection experiments, was used to simulate the effects of injection of a colder air in the corresponding adiabatic heat transfer situation. Good agreement between calculated and measured film cooling effectiveness was found for low blowing ratio M ≤ 0.5 and the effect of density was not significant. At higher blowing ratio M > 1 the calculations consistently overpredict the measured values of film cooling effectiveness.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Dale W. Fox ◽  
Fraser B. Jones ◽  
John W. McClintic ◽  
David G. Bogard ◽  
Thomas E. Dyson ◽  
...  

Most studies of turbine airfoil film cooling in laboratory test facilities have used relatively large plenums to feed flow into the coolant holes. However, a more realistic inlet condition for the film cooling holes is a relatively small channel. Previous studies have shown that the film cooling performance is significantly degraded when fed by perpendicular internal crossflow in a smooth channel. In this study, angled rib turbulators were installed in two geometric configurations inside the internal crossflow channel, at 45 deg and 135 deg, to assess the impact on film cooling effectiveness. Film cooling hole inlets were positioned in both prerib and postrib locations to test the effect of hole inlet position on film cooling performance. A test was performed independently varying channel velocity ratio and jet to mainstream velocity ratio. These results were compared to the film cooling performance of previously measured shaped holes fed by a smooth internal channel. The film cooling hole discharge coefficients and channel friction factors were also measured for both rib configurations with varying channel and inlet velocity ratios. Spatially averaged film cooling effectiveness is largely similar to the holes fed by the smooth internal crossflow channel, but hole-to-hole variation due to inlet position was observed.


Author(s):  
Andrew F. Chen ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

The combined effects of inlet purge flow and the slashface leakage flow on the film cooling effectiveness of a turbine blade platform were studied using the pressure sensitive paint (PSP) technique. Detailed film cooling effectiveness distributions on the endwall were obtained and analyzed. The inlet purge flow was generated by a row of equally-spaced cylindrical injection holes inside a single-tooth generic stator-rotor seal. In addition to the traditional 90 degree (radial outward) injection for the inlet purge flow, injection at a 45 degree angle was adopted to create a circumferential/azimuthal velocity component toward the suction side of the blades, which created a swirl ratio (SR) of 0.6. Discrete cylindrical film cooling holes were arranged to achieve an improved coverage on the endwall. Backward injection was attempted by placing backward injection holes near the pressure side leading edge portion. Slashface leakage flow was simulated by equally-spaced cylindrical injection holes inside a slot. Experiments were done in a five-blade linear cascade with an average turbulence intensity of 10.5%. The inlet and exit Mach numbers were 0.26 and 0.43, respectively. The inlet and exit mainstream Reynolds numbers based on the axial chord length of the blade were 475,000 and 720,000, respectively. The coolant-to-mainstream mass flow ratios (MFR) were varied from 0.5%, 0.75%, to 1% for the inlet purge flow. For the endwall film cooling holes and slashface leakage flow, blowing ratios (M) of 0.5, 1.0, and 1.5 were examined. Coolant-to-mainstream density ratios (DR) that range from 1.0 (close to low temperature experiments) to 1.5 (intermediate DR) and 2.0 (close to engine conditions) were also examined. The results provide the gas turbine engine designers a better insight into improved film cooling hole configurations as well as various parametric effects on endwall film cooling when the inlet (swirl) purge flow and slashface leakage flow were incorporated.


Sign in / Sign up

Export Citation Format

Share Document