cooling plate
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 41)

H-INDEX

15
(FIVE YEARS 6)

Author(s):  
Taewoo Kim ◽  
Kangin Lee ◽  
Minwan Jeong ◽  
Yeji Jeong ◽  
KwangUoong Koh ◽  
...  

For the stabilization of laser output power and wavelength of the high power fiber laser, the cooling plate must be properly taken into account. In this study, three analyzing methods which are heat transfer theory, CFD and experiment are used to analyze cooling plate performance by measuring pump Laser Diode(LD) temperature. Under limited operating conditions of a cooling plate, the internal flow of cooling plate is transitional flow so that the internal flow is assumed to be laminar and turbulence flow and conducted theoretical calculation. Through CFD, temperature of pump LD and characteristics of the internal flow were analyzed. By the experiment, temperature of pump LD was measured in real conditions and the performance of the cooling plate was verified. The results of this study indicate that three analyzing methods are practically useful to design the cooling plate for the high power fiber laser or similar things.


Author(s):  
Muhammad Syafiq Idris ◽  
Irnie Azlin Zakaria ◽  
Wan Azmi Wan Hamzah ◽  
Wan Ahmad Najmi Wan Mohamed

A Proton Electrolyte Membrane fuel cells (PEMFC) is considered to be a viable alternatives to Internal Combustion Engines (ICEs) in automotive applications due to the key advantages in thermal management system. The main duty of thermal management system is to maintain the desirable temperature, with a uniform temperature distribution across the stack and.its.individual membranes. In this paper, the thermal enhancement of a PEMFC cooling plate was analysed and presented. The hybrid Al₂O₃:SiO₂ was used as coolant in distributor cooling plate. The study focuses on water based 0.5% volume concentration of single Al₂O₃ , single SiO₂ nanofluids, hybrid Al₂O₃:SiO nanofluids with mixture ratio of 10:90, 20:80, 50:50, 60:40 and 90:10. The effect of different ratios of nanofluids to heat transfer enhancement and fluid flow in Reynold number range of 400 to 2000 was observed. A 3D computational fluid dynamic (CFD) was developed based on distributor cooling plates using Ansys 16.0. Positive heat transfer enhancement was obtained where the 10:90 Al₂O₃:SiO₂ nanofluids has the highest heat transfer coefficient as compared to other nanofluids used. However, all nanofluids experienced higher pressure drop. Therefore, the advantage ratio was used to analyze the effect of both heat transfer enhancements and pressure drop demerits for nanofluids adoption. The results concluded that 10:90 Al₂O₃:SiO₂ hybrid nanofluid is the most feasible candidate up to fluid flow of Re1000. The positive results implied that hybrid Al₂O₃:SiO₂ nanofluids do improve the single nanofluids behaviour and has a better potential for future applications in PEMFC thermal management.


2021 ◽  
Vol 7 ◽  
pp. 5804-5814
Author(s):  
Xi Chen ◽  
Qinxiao Liu ◽  
Ye Fang ◽  
Lingxuan He ◽  
Taiming Huang ◽  
...  

2021 ◽  
Vol 2083 (2) ◽  
pp. 022012
Author(s):  
Dazhou Yang ◽  
Mengjun Jiang

Abstract Four types of cooling plates with serpent channel structures are established to study the cooling effect of rectangular lithium-ion power battery under different cooling plates. Then, the number of serpent bends is analyzed, whether the fillet and pipe wall thickness is set on the cooling performance of the liquid cooling plate. According to the analysis results, a new liquid flow structure form of liquid cooling plate is designed. Numerical simulation results show that the newly designed cooling plate is integrated with the front flow of water and the internal liquid side flow, achieving a cooling effect with the maximum temperature is 309.55K and a pressure drop of 6032.1pa, which has the most effective cooling performance. Under the requirement of controlling reasonable temperature and low-pressure drop, a liquid cooling plate with better performance can be designed by innovatively setting the direction of the water inlet and outlet and the water channel’s internal flow. The above results will provide some ideas for the design of a lithium-ion battery liquid cooling plate.


2021 ◽  
Vol 6 (1) ◽  
pp. 12-19
Author(s):  
Choirul Anwar ◽  
Agus Suprayitno

Battery performance is affected by the problem of overheating which can cause mechanical damage to the battery and electronic components of the BMS (Battery Management System). With the need for an increase in battery charging time with fast capacity, the internal heat generated by the battery also increases so that the battery pack needs to be equipped with a cooling system. Currently, the cooling system in the battery pack uses a lot of cooling plate, cooling pipe, PCM (Phase Change Material) and cooling fluid. Combining cooling system design based on advantages and disadvantages to produce the best performance was tried using the cooling plate and PCM. The method used is to change the initial design of the battery pack without cooling to a cooling system by making a design and verifying the design. The process of thermal analysis is carried out in the process of charging the battery and removing the battery. The result of the research is the distribution of heat transfer that occurs during the battery charging process and the battery discharge is uniform and the temperature value obtained is the 43,2 °C battery discharge process in the main cooling plate component and the maximum temperature in the charging process is 57,6°C. at BMS. Cooling using a cooling plate and PCM for a closed system is maximized. Keywords: baterai Litium-Ion, Heat Sink, PCM


Sign in / Sign up

Export Citation Format

Share Document