scholarly journals A novel method for calculating effective thermal conductivity of particulate fouling

2019 ◽  
pp. 308-308
Author(s):  
Zhong-Bin Zhang ◽  
C Congyu ◽  
Yang Liu ◽  
Li-Hua Cao

The accurate thermal conductivity of fouling plays a very significant role in designing heat exchanger. In this paper, a novel method of calculating the effective thermal conductivity (ETC) of particulate fouling is put forward by using Image-Pro-Plus image processing, the finite element method and ANSYS parametric design language (APDL). First of all, according to the analysis on the particulate fouling samples features, the particulate fouling is considered as porous media with fractal characteristics, whose microscopic network model is established using the finite element method, and each unit body material properties are randomly assigned by APDL. Secondly, ETC of particulate fouling model is calculated by the steady state plate method. And then, the influence of particulate fouling microstructure on ETC is explored. Last, it is also show that the calculation resulting of ETC agrees well with available experimental data and empirical correlation. Moreover, it has been shown that ETC of particulate fouling is closely associated with the porosity and pore size. The method can be used to research on the thermal conductivity of fouling, discuss the influence of microstructure on ETC of fouling, and provide the guidelines for designing of heat exchanger on calculating accurate thermal conductivity of fouling.

1999 ◽  
Vol 122 (1) ◽  
pp. 171-175 ◽  
Author(s):  
A. Decarlis ◽  
M. Jaeger ◽  
R. Martin

This paper concerns the determination of the effective thermal conductivity of heterogeneous media with randomly dispersed inclusions. Inclusions of arbitrary shape can be considered since the self-consistent problem is solved numerically with the finite element method. Results for many different cases of heterogeneous media with axially symmetrical inclusions are presented. Moreover, the influence of the inclusion’s shape on the pseudo-percolation threshold is investigated. [S0022-1481(00)00801-X]


2012 ◽  
Vol 59 (2) ◽  
pp. 199-211 ◽  
Author(s):  
Piotr Danielczyk ◽  
Jacek Stadnicki

Reconstruction of the Main Cylinder of Carding Machine-Optimization of Dimensions with the Use of the Finite Element MethodThe following paper presents the solution to the problem of searching the best shape - structural form of the bottoms and optimal dimensions of the main cylinder of the carding machine with consideration to the criterion of minimal deflection amplitude. The ANSYS package of the Finite Element Method has been used for the analysis. Polak-Ribery conjugate gradient method has been applied for searching the optimal solution, basing on the parametric model of the cylinder written with the use ofAnsys Parametric Design Language.As a result of the performed analyses, reduction of maximum deflection value at approximately 80% has been obtained. Optimal cylinder dimensions enable application of a new textile technology - microfibre carding and improvement in the quality of traditional carding technology of woollen and wool-like fibres.


Sign in / Sign up

Export Citation Format

Share Document