On simplifying the matrix of a wff

1968 ◽  
Vol 33 (2) ◽  
pp. 180-192 ◽  
Author(s):  
Peter Andrews

In [3], [4], and [5] Joyce Friedman formulated and investigated certain rules which constitute a semi-decision procedure for wffs of first order predicate calculus in closed prenex normal form with prefixes of the form ∀x1 … ∀xκ∃y1 … ∃ym∀z1 … ∀zn. Given such a wff QM, where Q is the prefix and M is the matrix in conjunctive normal form, Friedman's rules can be used, in effect, to construct a matrix M* which is obtained from M by deleting certain conjuncts of M.

1976 ◽  
Vol 41 (1) ◽  
pp. 45-49
Author(s):  
Charles E. Hughes

AbstractA new reduction class is presented for the satisfiability problem for well-formed formulas of the first-order predicate calculus. The members of this class are closed prenex formulas of the form ∀x∀yC. The matrix C is in conjunctive normal form and has no disjuncts with more than three literals, in fact all but one conjunct is unary. Furthermore C contains but one predicate symbol, that being unary, and one function symbol which symbol is binary.


1971 ◽  
Vol 36 (2) ◽  
pp. 262-270
Author(s):  
Shoji Maehara ◽  
Gaisi Takeuti

A second order formula is called Π1 if, in its prenex normal form, all second order quantifiers are universal. A sequent F1, … Fm → G1 …, Gn is called Π1 if a formulais Π1If we consider only Π1 sequents, then we can easily generalize the completeness theorem for the cut-free first order predicate calculus to a cut-free Π1 predicate calculus.In this paper, we shall prove two interpolation theorems on the Π1 sequent, and show that Chang's theorem in [2] is a corollary of our theorem. This further supports our belief that any form of the interpolation theorem is a corollary of a cut-elimination theorem. We shall also show how to generalize our results for an infinitary language. Our method is proof-theoretic and an extension of a method introduced in Maehara [5]. The latter has been used frequently to prove the several forms of the interpolation theorem.


1970 ◽  
Vol 35 (2) ◽  
pp. 210-216 ◽  
Author(s):  
M. R. Krom

In [8] S. J. Maslov gives a positive solution to the decision problem for satisfiability of formulas of the formin any first-order predicate calculus without identity where h, k, m, n are positive integers, αi, βi are signed atomic formulas (atomic formulas or negations of atomic formulas), and ∧, ∨ are conjunction and disjunction symbols, respectively (cf. [6] for a related solvable class). In this paper we show that the decision problem is unsolvable for formulas that are like those considered by Maslov except that they have prefixes of the form ∀x∃y1 … ∃yk∀z. This settles the decision problems for all prefix classes of formulas for formulas that are in prenex conjunctive normal form in which all disjunctions are binary (have just two terms). In our concluding section we report results on decision problems for related classes of formulas including classes of formulas in languages with identity and we describe some special properties of formulas in which all disjunctions are binary including a property that implies that any proof of our result, that a class of formulas is a reduction class for satisfiability, is necessarily indirect. Our proof is based on an unsolvable combinatorial tag problem.


1970 ◽  
Vol 38 ◽  
pp. 145-152
Author(s):  
Akira Nakamura

The purpose of this paper is to present a propositional calculus whose decision problem is recursively unsolvable. The paper is based on the following ideas: (1) Using Löwenheim-Skolem’s Theorem and Surányi’s Reduction Theorem, we will construct an infinitely many-valued propositional calculus corresponding to the first-order predicate calculus.(2) It is well known that the decision problem of the first-order predicate calculus is recursively unsolvable.(3) Thus it will be shown that the decision problem of the infinitely many-valued propositional calculus is recursively unsolvable.


1969 ◽  
Vol 34 (2) ◽  
pp. 226-252 ◽  
Author(s):  
Jon Barwise

In recent years much effort has gone into the study of languages which strengthen the classical first-order predicate calculus in various ways. This effort has been motivated by the desire to find a language which is(I) strong enough to express interesting properties not expressible by the classical language, but(II) still simple enough to yield interesting general results. Languages investigated include second-order logic, weak second-order logic, ω-logic, languages with generalized quantifiers, and infinitary logic.


1984 ◽  
Vol 49 (4) ◽  
pp. 1262-1267
Author(s):  
Nobuyoshi Motohashi

Let L be a first order predicate calculus with equality which has a fixed binary predicate symbol <. In this paper, we shall deal with quantifiers Cx, ∀x ≦ y, ∃x ≦ y defined as follows: CxA(x) is ∀y∃x(y ≦ x ∧ A(x)), ∀x ≦ yA{x) is ∀x(x ≦ y ⊃ A(x)), and ∃x ≦ yA(x) is ∃x(x ≦ y ∧ 4(x)). The expressions x̄, ȳ, … will be used to denote sequences of variables. In particular, x̄ stands for 〈x1, …, xn〉 and ȳ stands for 〈y1,…, ym〉 for some n, m. Also ∃x̄, ∀x̄ ≦ ȳ, … will be used to denote ∃x1 ∃x2 … ∃xn, ∀x1 ≦ y1 ∀x2 ≦ y2 … ∀xn ≦ yn, …, respectively. Let X be a set of formulas in L such that X contains every atomic formula and is closed under substitution of free variables and applications of propositional connectives ¬(not), ∧(and), ∨(or). Then, ∑(X) is the set of formulas of the form ∃x̄B(x̄), where B ∈ X, and Φ(X) is the set of formulas of the form.Since X is closed under ∧, ∨, the two sets Σ(X) and Φ(X) are closed under ∧, ∨ in the following sense: for any formulas A and B in Σ(X) [Φ(X)], there are formulas in Σ(X)[ Φ(X)] which are obtained from A ∧ B and A ∨ B by bringing some quantifiers forward in the usual manner.


1955 ◽  
Vol 20 (2) ◽  
pp. 115-118 ◽  
Author(s):  
M. H. Löb

If Σ is any standard formal system adequate for recursive number theory, a formula (having a certain integer q as its Gödel number) can be constructed which expresses the proposition that the formula with Gödel number q is provable in Σ. Is this formula provable or independent in Σ? [2].One approach to this problem is discussed by Kreisel in [4]. However, he still leaves open the question whether the formula (Ex)(x, a), with Gödel-number a, is provable or not. Here (x, y) is the number-theoretic predicate which expresses the proposition that x is the number of a formal proof of the formula with Gödel-number y.In this note we present a solution of the previous problem with respect to the system Zμ [3] pp. 289–294, and, more generally, with respect to any system whose set of theorems is closed under the rules of inference of the first order predicate calculus, and satisfies the subsequent five conditions, and in which the function (k, l) used below is definable.The notation and terminology is in the main that of [3] pp. 306–326, viz. if is a formula of Zμ containing no free variables, whose Gödel number is a, then ({}) stands for (Ex)(x, a) (read: the formula with Gödel number a is provable in Zμ); if is a formula of Zμ containing a free variable, y say, ({}) stands for (Ex)(x, g(y)}, where g(y) is a recursive function such that for an arbitrary numeral the value of g() is the Gödel number of the formula obtained from by substituting for y in throughout. We shall, however, depart trivially from [3] in writing (), where is an arbitrary numeral, for (Ex){x, ).


Sign in / Sign up

Export Citation Format

Share Document