Two interpolation theorems for a predicate calculus

1971 ◽  
Vol 36 (2) ◽  
pp. 262-270
Author(s):  
Shoji Maehara ◽  
Gaisi Takeuti

A second order formula is called Π1 if, in its prenex normal form, all second order quantifiers are universal. A sequent F1, … Fm → G1 …, Gn is called Π1 if a formulais Π1If we consider only Π1 sequents, then we can easily generalize the completeness theorem for the cut-free first order predicate calculus to a cut-free Π1 predicate calculus.In this paper, we shall prove two interpolation theorems on the Π1 sequent, and show that Chang's theorem in [2] is a corollary of our theorem. This further supports our belief that any form of the interpolation theorem is a corollary of a cut-elimination theorem. We shall also show how to generalize our results for an infinitary language. Our method is proof-theoretic and an extension of a method introduced in Maehara [5]. The latter has been used frequently to prove the several forms of the interpolation theorem.

1972 ◽  
Vol 37 (2) ◽  
pp. 343-351
Author(s):  
Stephen J. Garland

Chang [1], [2] has proved the following generalization of the Craig interpolation theorem [3]: For any first-order formulas φ and ψ with free first- and second-order variables among ν1, …, νn, R and ν1, …, νn, S respectively, and for any sequence Q1, …, Qn of quantifiers such that Q1 is universal whenever ν1 is a second-order variable, ifthen there is a first-order formula θ with free variables among ν1, …, νn such that(Note that the Craig interpolation theorem is the special case of Chang's theorem in which Q1, …, Qn are all universal quantifiers.) Chang also raised the question [2, Remark (k)] as to whether the Lopez-Escobar interpolation theorem [6] for the infinitary language Lω1ω possesses a similar generalization. In this paper, we show that the answer to Chang's question is affirmative and, moreover, that several interpolation theorems for applied second-order languages for number theory also possess such generalizations.Maehara and Takeuti [7] have established independently proof-theoretic interpolation theorems for first-order logic and Lω1ω which have as corollaries both Chang's theorem and its analog for Lω1ω. Our proofs are quite different from theirs and rely on model-theoretic techniques stemming from the analogy between the theory of definability in Lω1ω and the theory of Borel and analytic sets of real numbers, rather than the technique of cut-elimination.


1976 ◽  
Vol 41 (1) ◽  
pp. 45-49
Author(s):  
Charles E. Hughes

AbstractA new reduction class is presented for the satisfiability problem for well-formed formulas of the first-order predicate calculus. The members of this class are closed prenex formulas of the form ∀x∀yC. The matrix C is in conjunctive normal form and has no disjuncts with more than three literals, in fact all but one conjunct is unary. Furthermore C contains but one predicate symbol, that being unary, and one function symbol which symbol is binary.


1969 ◽  
Vol 34 (2) ◽  
pp. 226-252 ◽  
Author(s):  
Jon Barwise

In recent years much effort has gone into the study of languages which strengthen the classical first-order predicate calculus in various ways. This effort has been motivated by the desire to find a language which is(I) strong enough to express interesting properties not expressible by the classical language, but(II) still simple enough to yield interesting general results. Languages investigated include second-order logic, weak second-order logic, ω-logic, languages with generalized quantifiers, and infinitary logic.


1984 ◽  
Vol 49 (4) ◽  
pp. 1262-1267
Author(s):  
Nobuyoshi Motohashi

Let L be a first order predicate calculus with equality which has a fixed binary predicate symbol <. In this paper, we shall deal with quantifiers Cx, ∀x ≦ y, ∃x ≦ y defined as follows: CxA(x) is ∀y∃x(y ≦ x ∧ A(x)), ∀x ≦ yA{x) is ∀x(x ≦ y ⊃ A(x)), and ∃x ≦ yA(x) is ∃x(x ≦ y ∧ 4(x)). The expressions x̄, ȳ, … will be used to denote sequences of variables. In particular, x̄ stands for 〈x1, …, xn〉 and ȳ stands for 〈y1,…, ym〉 for some n, m. Also ∃x̄, ∀x̄ ≦ ȳ, … will be used to denote ∃x1 ∃x2 … ∃xn, ∀x1 ≦ y1 ∀x2 ≦ y2 … ∀xn ≦ yn, …, respectively. Let X be a set of formulas in L such that X contains every atomic formula and is closed under substitution of free variables and applications of propositional connectives ¬(not), ∧(and), ∨(or). Then, ∑(X) is the set of formulas of the form ∃x̄B(x̄), where B ∈ X, and Φ(X) is the set of formulas of the form.Since X is closed under ∧, ∨, the two sets Σ(X) and Φ(X) are closed under ∧, ∨ in the following sense: for any formulas A and B in Σ(X) [Φ(X)], there are formulas in Σ(X)[ Φ(X)] which are obtained from A ∧ B and A ∨ B by bringing some quantifiers forward in the usual manner.


1976 ◽  
Vol 41 (4) ◽  
pp. 730-746
Author(s):  
Kenneth Slonneger

This paper is concerned with the proof theoretic development of certain infinite languages. These languages contain the usual infinite conjunctions and disjunctions, but in addition to homogeneous quantifiers such as ∀x0x1x2 … and ∃y0y1y2 …, we shall investigate particular subclasses of the dependent quantifiers described by Henkin [1]. The dependent quantifiers of Henkin can be thought of as partially ordered quantifiers defined by a function from one set to the power set of another set. This function assigns to each existentially bound variable, the set of universally bound variables on which it depends.The natural extension of Gentzen's first order predicate calculus to an infinite language with homogeneous quantifiers results in a system that is both valid and complete, and in which a cut elimination theorem can be proved [2]. The problem then arises of devising, if possible, a logical system dealing with general dependent quantifiers that is valid and complete. In this paper a system is presented that is valid and complete for an infinite language with homogeneous quantifiers and dependent quantifiers that are anti-well-ordered, for example, … ∀x2∃y2∀x1∃y1∀x0∃y0.Certain notational conventions will be employed in this paper. Greek letters will be used for ordinal numbers. The ordinal ω is the set of all natural numbers, and 2ω is the set of all ω -sequences of elements of 2 = {0,1}. The power set of S is denoted by P(S). μα[A(α)] stands for the smallest ordinal α such that A (α) holds.


1958 ◽  
Vol 23 (4) ◽  
pp. 417-419 ◽  
Author(s):  
R. L. Goodstein

Mr. L. J. Cohen's interesting example of a logical truth of indirect discourse appears to be capable of a simple formalisation and proof in a variant of first order predicate calculus. His example has the form:If A says that anything which B says is false, and B says that something which A says is true, then something which A says is false and something which B says is true.Let ‘A says x’ be formalised by ‘A(x)’ and let assertions of truth and falsehood be formalised as in the following table.We treat both variables x and predicates A (x) as sentences and add to the familiar axioms and inference rules of predicate logic a rule permitting the inference of A(p) from (x)A(x), where p is a closed sentence.We have to prove that from


1968 ◽  
Vol 33 (2) ◽  
pp. 180-192 ◽  
Author(s):  
Peter Andrews

In [3], [4], and [5] Joyce Friedman formulated and investigated certain rules which constitute a semi-decision procedure for wffs of first order predicate calculus in closed prenex normal form with prefixes of the form ∀x1 … ∀xκ∃y1 … ∃ym∀z1 … ∀zn. Given such a wff QM, where Q is the prefix and M is the matrix in conjunctive normal form, Friedman's rules can be used, in effect, to construct a matrix M* which is obtained from M by deleting certain conjuncts of M.


1977 ◽  
Vol 42 (4) ◽  
pp. 564-578 ◽  
Author(s):  
H. C. M. de Swart

Let IPC be the intuitionistic first-order predicate calculus. From the definition of derivability in IPC the following is clear:(1) If A is derivable in IPC, denoted by “⊦IPCA”, then A is intuitively true, that means, true according to the intuitionistic interpretation of the logical symbols. To be able to settle the converse question: “if A is intuitively true, then ⊦IPCA”, one should make the notion of intuitionistic truth more easily amenable to mathematical treatment. So we have to look then for a definition of “A is valid”, denoted by “⊨A”, such that the following holds:(2) If A is intuitively true, then ⊨ A.Then one might hope to be able to prove(3) If ⊨ A, then ⊦IPCA.If one would succeed in finding a notion of “⊨ A”, such that all the conditions (1), (2) and (3) are satisfied, then the chain would be closed, i.e. all the arrows in the scheme below would hold.Several suggestions for ⊨ A have been made in the past: Topological and algebraic interpretations, see Rasiowa and Sikorski [1]; the intuitionistic models of Beth, see [2] and [3]; the interpretation of Grzegorczyk, see [4] and [5]; the models of Kripke, see [6] and [7]. In Thirty years of foundational studies, A. Mostowski [8] gives a review of the interpretations, proposed for intuitionistic logic, on pp. 90–98.


1973 ◽  
Vol 38 (3) ◽  
pp. 410-412
Author(s):  
John Lake

Ackermann's set theory A* is usually formulated in the first order predicate calculus with identity, ∈ for membership and V, an individual constant, for the class of all sets. We use small Greek letters to represent formulae which do not contain V and large Greek letters to represent any formulae. The axioms of A* are the universal closures ofwhere all free variables are shown in A4 and z does not occur in the Θ of A2.A+ is a generalisation of A* which Reinhardt introduced in [3] as an attempt to provide an elaboration of Ackermann's idea of “sharply delimited” collections. The language of A+ is that of A*'s augmented by a new constant V′, and its axioms are A1–A3, A5, V ⊆ V′ and the universal closure ofwhere all free variables are shown.Using a schema of indescribability, Reinhardt states in [3] that if ZF + ‘there exists a measurable cardinal’ is consistent then so is A+, and using [4] this result can be improved to a weaker large cardinal axiom. It seemed plausible that A+ was stronger than ZF, but our main result, which is contained in Theorem 5, shows that if ZF is consistent then so is A+, giving an improvement on the above results.


1966 ◽  
Vol 31 (1) ◽  
pp. 23-45 ◽  
Author(s):  
M. H. Löb

By ΡL we shall mean the first order predicate logic based on S4. More explicitly: Let Ρ0 stand for the first order predicate calculus. The formalisation of Ρ0 used in the present paper will be given later. ΡL is obtained from Ρ0 by adding the rules the propositional constant □ and


Sign in / Sign up

Export Citation Format

Share Document