Sur la théorie élémentaire des corps de fonctions

1986 ◽  
Vol 51 (4) ◽  
pp. 948-956 ◽  
Author(s):  
Jean-Louis Duret

AbstractWe study the first order theory of function fields in the language of fields by using fundamental results on curves in algebraic geometry. We give some applications; for example, using a theorem of G. Cherlin, we prove the undecidability of function fields with nonzero characteristic over an algebraically closed field.

2010 ◽  
Vol 16 (2) ◽  
pp. 261-269 ◽  
Author(s):  
Alice Medvedev ◽  
Ramin Takloo-Bighash

AbstractWe carry out some of Galois' work in the setting of an arbitrary first-order theory T. We replace the ambient algebraically closed field by a large model M of T, replace fields by definably closed subsets of M, assume that T codes finite sets, and obtain the fundamental duality of Galois theory matching subgroups of the Galois group of L over F with intermediate extensions F ≤ K ≤ L. This exposition of a special case of [10] has the advantage of requiring almost no background beyond familiarity with fields, polynomials, first-order formulae, and automorphisms.


2002 ◽  
Vol 67 (2) ◽  
pp. 859-878 ◽  
Author(s):  
L. R. Galminas ◽  
John W. Rosenthal

AbstractWe show that the first order theory of the lattice <ω(S) of finite dimensional closed subsets of any nontrivial infinite dimensional Steinitz Exhange System S has logical complexity at least that of first order number theory and that the first order theory of the lattice (S∞) of computably enumerable closed subsets of any nontrivial infinite dimensional computable Steinitz Exchange System S∞ has logical complexity exactly that of first order number theory. Thus, for example, the lattice of finite dimensional subspaces of a standard copy of ⊕ωQ interprets first order arithmetic and is therefore as complicated as possible. In particular, our results show that the first order theories of the lattice (V∞) of c.e. subspaces of a fully effective ℵ0-dimensional vector space V∞ and the lattice of c.e. algebraically closed subfields of a fully effective algebraically closed field F∞ of countably infinite transcendence degree each have logical complexity that of first order number theory.


Computability ◽  
2019 ◽  
Vol 8 (3-4) ◽  
pp. 347-358
Author(s):  
Matthew Harrison-Trainor

1959 ◽  
Vol 14 ◽  
pp. 223-234 ◽  
Author(s):  
Hisasi Morikawa

Let k be an algebraically closed field of characteristic p>0. Let K/k be a function field of one variable and L/K be an unramified separable abelian extension of degree pr over K. The galois automorphisms ε1, …, εpr of L/K are naturally extended to automorphisms η(ε1), … , η(εpr) of the jacobian variety JL of L/k. If we take a svstem of p-adic coordinates on JL, we get a representation {Mp(η(εv))} of the galois group G(L/K) of L/K over p-adic integers.


2013 ◽  
Vol 89 (2) ◽  
pp. 234-242 ◽  
Author(s):  
DONALD W. BARNES

AbstractFor a Lie algebra $L$ over an algebraically closed field $F$ of nonzero characteristic, every finite dimensional $L$-module can be decomposed into a direct sum of submodules such that all composition factors of a summand have the same character. Using the concept of a character cluster, this result is generalised to fields which are not algebraically closed. Also, it is shown that if the soluble Lie algebra $L$ is in the saturated formation $\mathfrak{F}$ and if $V, W$ are irreducible $L$-modules with the same cluster and the $p$-operation vanishes on the centre of the $p$-envelope used, then $V, W$ are either both $\mathfrak{F}$-central or both $\mathfrak{F}$-eccentric. Clusters are used to generalise the construction of induced modules.


2015 ◽  
Vol 57 (2) ◽  
pp. 157-185 ◽  
Author(s):  
Peter Franek ◽  
Stefan Ratschan ◽  
Piotr Zgliczynski

Sign in / Sign up

Export Citation Format

Share Document