Undecidability of the real-algebraic structure of models of intuitionistic elementary analysis

2000 ◽  
Vol 65 (3) ◽  
pp. 1014-1030 ◽  
Author(s):  
Miklós Erdélyi-Szabó

AbstractWe show that true first-order arithmetic is interpretable over the real-algebraic structure of models of intuitionistic analysis built upon a certain class of complete Heyting algebras. From this the undecidability of the structures follows. We also show that Scott's model is equivalent to true second-order arithmetic. In the appendix we argue that undecidability on the language of ordered rings follows from intuitionistically plausible properties of the real numbers.

2001 ◽  
Vol 66 (3) ◽  
pp. 1353-1358 ◽  
Author(s):  
Christopher S. Hardin ◽  
Daniel J. Velleman

This paper is a contribution to the project of determining which set existence axioms are needed to prove various theorems of analysis. For more on this project and its history we refer the reader to [1] and [2].We work in a weak subsystem of second order arithmetic. The language of second order arithmetic includes the symbols 0, 1, =, <, +, ·, and ∈, together with number variables x, y, z, … (which are intended to stand for natural numbers), set variables X, Y, Z, … (which are intended to stand for sets of natural numbers), and the usual quantifiers (which can be applied to both kinds of variables) and logical connectives. We write ∀x < t φ and ∃x < t φ as abbreviations for ∀x(x < t → φ) and ∃x{x < t ∧ φ) respectively; these are called bounded quantifiers. A formula is said to be if it has no quantifiers applied to set variables, and all quantifiers applied to number variables are bounded. It is if it has the form ∃xθ and it is if it has the form ∀xθ, where in both cases θ is .The theory RCA0 has as axioms the usual Peano axioms, with the induction scheme restricted to formulas, and in addition the comprehension scheme, which consists of all formulas of the formwhere φ is , ψ is , and X does not occur free in φ(n). (“RCA” stands for “Recursive Comprehension Axiom.” The reason for the name is that the comprehension scheme is only strong enough to prove the existence of recursive sets.) It is known that this theory is strong enough to allow the development of many of the basic properties of the real numbers, but that certain theorems of elementary analysis are not provable in this theory. Most relevant for our purposes is the fact that it is impossible to prove in RCA0 that every continuous function on the closed interval [0, 1] attains maximum and minimum values (see [1]).Since the most common proof of the Mean Value Theorem makes use of this theorem, it might be thought that the Mean Value Theorem would also not be provable in RCA0. However, we show in this paper that the Mean Value Theorem can be proven in RCA0. All theorems stated in this paper are theorems of RCA0, and all of our reasoning will take place in RCA0.


Author(s):  
Wilfried Sieg

Proof theory is a branch of mathematical logic founded by David Hilbert around 1920 to pursue Hilbert’s programme. The problems addressed by the programme had already been formulated, in some sense, at the turn of the century, for example, in Hilbert’s famous address to the First International Congress of Mathematicians in Paris. They were closely connected to the set-theoretic foundations for analysis investigated by Cantor and Dedekind – in particular, to difficulties with the unrestricted notion of system or set; they were also related to the philosophical conflict with Kronecker on the very nature of mathematics. At that time, the central issue for Hilbert was the ‘consistency of sets’ in Cantor’s sense. Hilbert suggested that the existence of consistent sets, for example, the set of real numbers, could be secured by proving the consistency of a suitable, characterizing axiom system, but indicated only vaguely how to give such proofs model-theoretically. Four years later, Hilbert departed radically from these indications and proposed a novel way of attacking the consistency problem for theories. This approach required, first of all, a strict formalization of mathematics together with logic; then, the syntactic configurations of the joint formalism would be considered as mathematical objects; finally, mathematical arguments would be used to show that contradictory formulas cannot be derived by the logical rules. This two-pronged approach of developing substantial parts of mathematics in formal theories (set theory, second-order arithmetic, finite type theory and still others) and of proving their consistency (or the consistency of significant sub-theories) was sharpened in lectures beginning in 1917 and then pursued systematically in the 1920s by Hilbert and a group of collaborators including Paul Bernays, Wilhelm Ackermann and John von Neumann. In particular, the formalizability of analysis in a second-order theory was verified by Hilbert in those very early lectures. So it was possible to focus on the second prong, namely to establish the consistency of ‘arithmetic’ (second-order number theory and set theory) by elementary mathematical, ‘finitist’ means. This part of the task proved to be much more recalcitrant than expected, and only limited results were obtained. That the limitation was inevitable was explained in 1931 by Gödel’s theorems; indeed, they refuted the attempt to establish consistency on a finitist basis – as soon as it was realized that finitist considerations could be carried out in a small fragment of first-order arithmetic. This led to the formulation of a general reductive programme. Gentzen and Gödel made the first contributions to this programme by establishing the consistency of classical first-order arithmetic – Peano arithmetic (PA) – relative to intuitionistic arithmetic – Heyting arithmetic. In 1936 Gentzen proved the consistency of PA relative to a quantifier-free theory of arithmetic that included transfinite recursion up to the first epsilon number, ε0; in his 1941 Yale lectures, Gödel proved the consistency of the same theory relative to a theory of computable functionals of finite type. These two fundamental theorems turned out to be most important for subsequent proof-theoretic work. Currently it is known how to analyse, in Gentzen’s style, strong subsystems of second-order arithmetic and set theory. The first prong of proof-theoretic investigations, the actual formal development of parts of mathematics, has also been pursued – with a surprising result: the bulk of classical analysis can be developed in theories that are conservative over (fragments of) first-order arithmetic.


1983 ◽  
Vol 48 (4) ◽  
pp. 1013-1034
Author(s):  
Piergiorgio Odifreddi

We conclude here the treatment of forcing in recursion theory begun in Part I and continued in Part II of [31]. The numbering of sections is the continuation of the numbering of the first two parts. The bibliography is independent.In Part I our language was a first-order language: the only set we considered was the (set constant for the) generic set. In Part II a second-order language was introduced, and we had to interpret the second-order variables in some way. What we did was to consider the ramified analytic hierarchy, defined by induction as:A0 = {X ⊆ ω: X is arithmetic},Aα+1 = {X ⊆ ω: X is definable (in 2nd order arithmetic) over Aα},Aλ = ⋃α<λAα (λ limit),RA = ⋃αAα.We then used (a relativized version of) the fact that (Kleene [27]). The definition of RA is obviously modeled on the definition of the constructible hierarchy introduced by Gödel [14]. For this we no longer work in a language for second-order arithmetic, but in a language for (first-order) set theory with membership as the only nonlogical relation:L0 = ⊘,Lα+1 = {X: X is (first-order) definable over Lα},Lλ = ⋃α<λLα (λ limit),L = ⋃αLα.


1984 ◽  
Vol 49 (4) ◽  
pp. 1339-1349 ◽  
Author(s):  
D. Van Dalen

Among the more traditional semantics for intuitionistic logic the Beth and the Kripke semantics seem well-suited for direct manipulations required for the derivation of metamathematical results. In particular Smoryński demonstrated the usefulness of Kripke models for the purpose of obtaining closure properties for first-order arithmetic, [S], and second-order arithmetic, [J-S]. Weinstein used similar techniques to handle intuitionistic analysis, [W]. Since, however, Beth-models seem to lend themselves better for dealing with analysis, cf. [D], we have developed a somewhat more liberal semantics, that shares the features of both Kripke and Beth semantics, in order to obtain analogues of Smoryński's collecting operations, which we will call Smoryński-glueing, in line with the categorical tradition.


Computability ◽  
2021 ◽  
pp. 1-31
Author(s):  
Sam Sanders

The program Reverse Mathematics (RM for short) seeks to identify the axioms necessary to prove theorems of ordinary mathematics, usually working in the language of second-order arithmetic L 2 . A major theme in RM is therefore the study of structures that are countable or can be approximated by countable sets. Now, countable sets must be represented by sequences here, because the higher-order definition of ‘countable set’ involving injections/bijections to N cannot be directly expressed in L 2 . Working in Kohlenbach’s higher-order RM, we investigate various central theorems, e.g. those due to König, Ramsey, Bolzano, Weierstrass, and Borel, in their (often original) formulation involving the definition of ‘countable set’ based on injections/bijections to N. This study turns out to be closely related to the logical properties of the uncountably of R, recently developed by the author and Dag Normann. Now, ‘being countable’ can be expressed by the existence of an injection to N (Kunen) or the existence of a bijection to N (Hrbacek–Jech). The former (and not the latter) choice yields ‘explosive’ theorems, i.e. relatively weak statements that become much stronger when combined with discontinuous functionals, even up to Π 2 1 - CA 0 . Nonetheless, replacing ‘sequence’ by ‘countable set’ seriously reduces the first-order strength of these theorems, whatever the notion of ‘set’ used. Finally, we obtain ‘splittings’ involving e.g. lemmas by König and theorems from the RM zoo, showing that the latter are ‘a lot more tame’ when formulated with countable sets.


2001 ◽  
Vol 66 (1) ◽  
pp. 225-256 ◽  
Author(s):  
Loïc Colson ◽  
Serge Grigorieff

AbstractWe introduce a notion of syntactical truth predicate (s.t.p.) for the second order arithmetic PA2. An s.t.p. is a set T of closed formulas such that:(i) T(t = u) if and only if the closed first order terms t and u are convertible, i.e., have the same value in the standard interpretation(ii) T(A → B) if and only if (T(A) ⇒ T(B))(iii) T(∀xA) if and only if (T(A[x ← t]) for any closed first order term t)(iv) T(∀X A) if and only if (T(A[X ← ∆]) for any closed set definition ∆ = {x ∣ D(x)}).S.t.p.'s can be seen as a counterpart to Tarski's notion of (model-theoretical) validity and have main model properties. In particular, their existence is equivalent to the existence of an ω-model of PA2, this fact being provable in PA2 with arithmetical comprehension only.


Sign in / Sign up

Export Citation Format

Share Document