scholarly journals Evaluation of Hydrogen Embrittlement by Internal High-Pressure Hydrogen Environment in Specimen

2008 ◽  
Vol 72 (2) ◽  
pp. 125-131 ◽  
Author(s):  
Toshio Ogata
Author(s):  
Hideki Nakagawa

Practical application of fuel cell vehicle has started in the world, and high-pressure hydrogen tanks are currently considered to be the mainstream hydrogen storage system for commercially implemented fuel cell vehicle. Application of metallic materials to the components of high-pressure hydrogen storage system: hydrogen tanks, valves, measuring instructions and so on, have been discussed. In this work, tensile properties of four types of stainless steels were evaluated in 45MPa (6527psig) and 75MPa (10878psig) high-pressure gaseous hydrogen at a slow strain rate of 3×10−6 s−1 at ambient temperature. Type 316L (UNS S31603) stainless steel hardly showed ductility loss in gaseous hydrogen, since it had stable austenitic structure. On the other hand, Type 304 (UNS S30400) metastable austenitic stainless steel showed remarkable ductility loss in gaseous hydrogen, which was caused by the hydrogen embrittlement of strain induced martensitic phase. Likewise, Type 205 (UNS S20500) nitrogen-strengthened austenitic stainless steel showed remarkable ductility loss in gaseous hydrogen, though it had stable austenitic structure in the same manner as Type 316L. The ductility loss of Type 205 was due to the hydrogen embrittlement of austenitic phase resulting from the formation of planar dislocation array. Furthermore, Type 329J4L (UNS S31260) duplex stainless steel showed extreme ductility loss in gaseous hydrogen, which was caused by the hydrogen embrittlement of ferritic phase.


Author(s):  
Daichi Tsurumi ◽  
Hiroyuki Saito ◽  
Hirokazu Tsuji

As an alternative method to slow strain rate technique (SSRT) under high-pressure hydrogen gas evaluation, SSRT was performed with a cathodically charged specimen. Cr-Mo low alloy steel with a tensile strength of 1000 MPa grade was selected as a test material. Cathodic charging was performed in 3% NaCl solution and at a current density in the range of 50–600 A/m2. The effect of specimen size on the hydrogen embrittlement properties was evaluated. Relative reduction of area (RRA) values obtained by tests at a cathode current density of 400 A/m2 were equivalent to those performed in hydrogen gas at pressures of 10 to 35 MPa. Fracture surface observations were also performed using scanning electron microscopy (SEM). The quasi-cleavage fracture surface was observed only after rupture of small specimens that were subjected to hydrogen charged tests. It was also necessary for the diameter of the specimen to be small to form the quasi-cleavage fracture surface. The results indicated that to simulate the high-pressure hydrogen gas test, a specimen with a smaller parallel section diameter that is continuously charged until rupture is preferable.


1965 ◽  
Vol 87 (2) ◽  
pp. 313-318 ◽  
Author(s):  
J. W. Coombs ◽  
R. E. Allen ◽  
F. H. Vitovec

The creep and rupture properties of steels were investigated at 1000 deg F in an environment of argon at 50 psig pressure and hydrogen at 900 psig pressure. An SAE 1020 steel, a 0.5 percent Mo-steel, and a 1 percent Cr-0.5 percent Mo steel were used as test materials. The strength of the steels was lower and the creep rate higher in hydrogen than in argon. The data are discussed in respect to the effect of stress on the rate of hydrogen attack.


2020 ◽  
Vol 109 ◽  
pp. 102746
Author(s):  
Thanh Tuan Nguyen ◽  
Un Bong Beak ◽  
Jaeyeong Park ◽  
Seung Hoon Nahm ◽  
Naehyung Tak

2006 ◽  
Vol 55 (4) ◽  
pp. 139-145 ◽  
Author(s):  
Tomohiko Omura ◽  
Kenji Kobayashi ◽  
Mitsuo Miyahara ◽  
Takeo Kudo

Sign in / Sign up

Export Citation Format

Share Document