Two damaged final reheat tubes from a 30 year old supercritical unit were submitted to the laboratory for evaluation following the discovering of a failure of one of the tubes after deslagging operations; a third, dented tube was left in service. The 304H stainless steel tubes were installed in 1990 when the reheater was replaced. The bulk microstructure of both tubes shows evidence of sensitization, which is not unusual given this application (reheater). The failed tube appears to be an intergranular separation that started either subsurface or at the ID, propagating to the OD surface. The sensitization of the steel apparently made the material susceptible to corrosion as well as significantly reduced the impact strength of the material to 10–15% of its estimated original level (verified by Charpy impact test). Examination of the dented tube (#101A) showed a subsurface plane of damage some 30 mils from the ID surface, running parallel to the surface. The damage consisted of intergranular separation, caused by the impact loading event, and referred to in the literature as an “attached spalling failure”. Spalling failures occur when the shock wave is reflected from the back surface (the ID surface of the tube), interacting with the incident shock wave as a stress wave. When the magnitude of this tensile stress exceeds the inherent strength of the material, failure occurs. The overall area of the attached spalling failure is being investigated; the concern there is if it is exceptionally large, it may provide a thermal barrier to heat transfer from the OD to the ID and result in a local overheating failure. Within the metallographic sample, however, the damage area was quite small and therefore did not appear to be an immediate issue. The long-term suitability of tube 105A, which remains in service with a dent induced by the same deslagging process that damaged tubes 101A and 103A, is doubtful and should be addressed during the Fall 2006 boiler overhaul. For the shortterm, the assumption was made that cracking due to the deslagging impact would be oriented similar to non-failed tube and extension of these fissures to failure between Spring 2006 and the Fall outage is not expected.