scholarly journals Studies of palatine rugae and interferon regulatory factor 6 variations in a group of families with sporadic hypodontia

2009 ◽  
Vol 51 (4) ◽  
pp. 521-526 ◽  
Author(s):  
Alys M. Murdoch ◽  
Asli Patir ◽  
Figen Seymen ◽  
Alexandre R. Vieira
2019 ◽  
pp. 1-3
Author(s):  
Mazen Kurban ◽  
Edgar Jabbour ◽  
Lamiaa Hamie ◽  
Mazen Kurban ◽  
Pamela Kassabian

Interferon Regulatory Factor 6 (IRF-6) and p63 are two vital transcription factors implicated in normal craniofacial development. In this report, we present a family with Van Der Woude Syndrome (VWS) with a mutation in exon 9 of IRF-6 gene and a phenotypically overlapping case of Rapp-Hodgkin Syndrome (RHS) resulting from a mutation in the p63 gene. Members from both families presented with congenital lip pits and cleft lip/palate. The RHS case had additional ectodermal features that underscore the upstream nature of p63 in the complex p63-IRF-6 interactive pathway.


2020 ◽  
Vol 22 (11) ◽  
Author(s):  
Yuefang Ren ◽  
Jie Dong ◽  
Pingya He ◽  
Yufei Liang ◽  
Lifang Wu ◽  
...  

2014 ◽  
Vol 127 (13) ◽  
pp. 2840-2848 ◽  
Author(s):  
L. C. Biggs ◽  
R. L. Naridze ◽  
K. A. DeMali ◽  
D. F. Lusche ◽  
S. Kuhl ◽  
...  

2013 ◽  
Vol 133 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Gabriel de la Garza ◽  
Jack Robert Schleiffarth ◽  
Martine Dunnwald ◽  
Anuj Mankad ◽  
Jason L. Weirather ◽  
...  

2008 ◽  
Vol 28 (7) ◽  
pp. 2235-2243 ◽  
Author(s):  
Caleb M. Bailey ◽  
Daniel E. Abbott ◽  
Naira V. Margaryan ◽  
Zhila Khalkhali-Ellis ◽  
Mary J. C. Hendrix

ABSTRACT Interferon regulatory factor 6 (IRF6) is a novel and unique member of the IRF family of transcription factors. IRF6 has not been linked to the regulatory pathways or functions associated with other IRF family members, and the regulation and function of IRF6 remain unknown. We recently identified a protein interaction between IRF6 and the tumor suppressor maspin. To gain insight into the biological significance of the maspin-IRF6 interaction, we examined the regulation and function of IRF6 in relation to maspin in normal mammary epithelial cells. Our results demonstrate that in quiescent cells, IRF6 exists primarily in a nonphosphorylated state. However, cellular proliferation leads to rapid IRF6 phosphorylation, resulting in proteasome-dependent IRF6 degradation. These data are supported in situ by the increased expression of IRF6 in quiescent, differentiated lobuloalveolar cells of the lactating mammary gland compared to its expression in proliferating ductal and glandular epithelial cells during pregnancy. Furthermore, the reexpression of IRF6 in breast cancer cells results in cell cycle arrest, and the presence of maspin augments this response. These data support a model in which IRF6, in collaboration with maspin, promotes mammary epithelial cell differentiation by facilitating entry into the G0 phase of the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document