Time course changes of fibrous structure within connective tissue. Why do "wrinkles" or "sags" develop with age?

1989 ◽  
Vol 51 (6) ◽  
pp. 1093-1100 ◽  
Author(s):  
SHUHEI IMAYAMA
2009 ◽  
Vol 129 (7) ◽  
pp. 709-715 ◽  
Author(s):  
Masahiko Nishimura ◽  
Akinobu Kakigi ◽  
Taizo Takeda ◽  
Teruhiko Okada ◽  
Katsumi Doi
Keyword(s):  

1996 ◽  
Vol 81 (3) ◽  
pp. 1174-1183 ◽  
Author(s):  
H. Obrig ◽  
C. Hirth ◽  
J. G. Junge-Hulsing ◽  
C. Doge ◽  
T. Wolf ◽  
...  

We studied cerebral hemodynamic response to a sequential motor task in 56 subjects to investigate the time course and distribution of blood oxygenation changes as monitored by near-infrared spectroscopy (NIRS). To address whether response is modulated by different performance velocities, a group of subjects (n = 12) was examined while performing the motor task at 1, 2, and 3 Hz. The results demonstrate that 1) the NIRS response reflects localized changes in cerebral hemodynamics, 2) the response, consisting of an increase in oxygenated hemoglobin concentration [oxy-Hb] and a decrease in deoxygenated hemoglobin concentration ([deoxy-Hb]), is lateralized and increases in amplitude with higher performance rates, and 3) changes in [oxy-Hb] and [deoxy-Hb] differ in time course. Changes in [oxy-Hb] are biphasic, with a fast initial increase and a pronounced poststimulus undershoot. The stimulus-associated decrease in [deoxy-Hb] is monophasic, and response latency is greater. We conclude that NIRS is able to detect even small changes in cerebral hemodynamic response to functional stimulation.


2008 ◽  
Vol 82 (1) ◽  
pp. 80-86 ◽  
Author(s):  
Yasuko Uchigata ◽  
Toshika Otani ◽  
Hiroko Takaike ◽  
Junnosuke Miura ◽  
Mari Osawa ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
pp. 4 ◽  
Author(s):  
Gökhan Akdemir ◽  
Figen Kaymaz ◽  
Yasemin Gursoy-Özdemir ◽  
Nejat Akalan ◽  
EkinSu Akdemir

2000 ◽  
Vol 23 (6) ◽  
pp. 613-623 ◽  
Author(s):  
Peng QU ◽  
Mareomi HAMADA ◽  
Shuntaro IKEDA ◽  
Go HIASA ◽  
Yuji SHIGEMATSU ◽  
...  

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1944
Author(s):  
Harumi Kaga ◽  
Masaru Enomoto ◽  
Hiroki Shimizu ◽  
Izuru Nagashima ◽  
Keigo Matsuda ◽  
...  

The microwave-assisted heating reaction of N-acetyl glucosamine (GlcNAc) in sulfolane is described. The reaction produces two major products that are assignable to 1,6-anhydro-2-acetamido-2-deoxy-β-d-glucopyranose (AGPNAc) and 1,6-anhydro-2-acetamido-2-deoxy-β-d-glucofuranose (AGFNAc). In order to reveal a general feature of the system, the 3, 5, and 10 min reactions were performed at 140, 160, 180, 200, and 220 °C to clarify the time course changes in the conversion of GlcNAc and the yields of the two produced 1,6-anhydrosugars. Temperature is a crucial factor that significantly affects the conversion of GlcNAc. The yields of AGPNAc and AGFNAc are also drastically changed depending on the reaction conditions. The 5-min reaction at 200 °C is shown to be the optimal condition to generate the 1,6-anhydrosugars with a high efficiency in which AGPNAc and AGFNAc are produced in the yields of 21% and 44%, respectively. Consequently, the microwave-assisted heating reaction of GlcNAc in sulfolane is shown to be a simple and promising pathway to generate 1,6-anhydrosugars consisting of amino monosaccharide backbones, which have high potentials as raw materials leading to biological oligosaccharides and biomimetic polysaccharides.


Sign in / Sign up

Export Citation Format

Share Document