G proteins and modulation of insulin secretion

Diabetes ◽  
1991 ◽  
Vol 40 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. P. Robertson ◽  
E. R. Seaquist ◽  
T. F. Walseth
Keyword(s):  
Diabetes ◽  
1991 ◽  
Vol 40 (1) ◽  
pp. 1-6 ◽  
Author(s):  
R. P. Robertson ◽  
E. R. Seaquist ◽  
T. F. Walseth
Keyword(s):  

1992 ◽  
Vol 12 (2) ◽  
pp. 95-100 ◽  
Author(s):  
Nicholas S. Berrow ◽  
Roger D. Hurst ◽  
Susan L. F. Chan ◽  
Noel G. Morgan

Rat islets express a pertussis toxin sensitive G-protein involved in receptor-mediated inhibition of insulin secretion. This has been assumed previously to represent “Gi” which couples inhibitory receptors to adenylate cyclase. Incubation of islet G-proteins with32P-NAD and pertussis toxin resulted in the labelling of a band of molecular weight 40,000. This band was very broad and did not allow resolution of individual components. Incubation of the radiolabelled proteins with an anti-Go antiserum resulted in specific immunoprecipitation of a32P-labelled band. These results demonstrate that the complement of pertussis toxin sensitive G-proteins in rat islets includes Go.


1993 ◽  
Vol 289 (2) ◽  
pp. 379-385 ◽  
Author(s):  
G Li ◽  
R Regazzi ◽  
E Roche ◽  
C B Wollheim

Small G-proteins (SMGs) require isoprenylation for their association with membranes. We have examined protein isoprenylation, subcellular distribution of SMGs, cytosolic Ca2+ changes and insulin secretion in HIT-T15 cells after treatment with lovastatin, which inhibits the production of isoprenoids by blocking mevalonate production by 3-hydroxy-3-methylglutaryl-CoA reductase. Numerous proteins in the 20-70 kDa range were found to be isoprenylated. Most of these proteins co-migrated with SMGs (21-27 kDa). Lovastatin treatment (25 microM, 24 h) decreased protein isoprenylation and affected the distribution of several SMGs, causing a large accumulation in the cytosol and a detectable decrease in membranes. Lovastatin selectively attenuated the potentiating action of bombesin and vasopressin, which activate phospholipase C in these cells, on insulin secretion stimulated by nutrients (glucose + leucine + glutamine). This lovastatin effect was overcome by mevalonate. Insulin secretion stimulated by nutrients alone or insulin release in the presence of the potentiating agents forskolin or phorbol myristate acetate remained unaffected. As the modulation of insulin secretion by isoprenaline and somatostatin were not altered by lovastatin, the drug does not non-selectively affect the binding of ligands to their receptors. Lovastatin did not interfere with the activation of phospholipase C by bombesin and vasopressin, since the rise in cytosolic Ca2+ induced by these agents was not changed. Limonene, proposed to block specifically prenyl-protein transferases of SMGs, did not alter protein isoprenylation patterns, but inhibited the stimulated insulin secretion. In conclusion, lovastatin selectively attenuated the potentiation of nutrient-induced insulin secretion by bombesin and vasopressin without affecting their activation of phospholipase C. The concomitant changes in SMG isoprenylation and their subcellular distribution after lovastatin treatment suggest that SMGs could play an important role in the bombesin and vasopressin action on insulin secretion.


Diabetes ◽  
1992 ◽  
Vol 41 (11) ◽  
pp. 1390-1399 ◽  
Author(s):  
E. R. Seaquist ◽  
A. R. Neal ◽  
K. D. Shoger ◽  
T. F. Walseth ◽  
R. P. Robertson

2006 ◽  
Vol 291 (1) ◽  
pp. E9-E14 ◽  
Author(s):  
Nobuo Sekine ◽  
Koji Takano ◽  
Nako Kimata-Hayashi ◽  
Takashi Kadowaki ◽  
Toshiro Fujita

Direct effects of adrenomedullin on insulin secretion from pancreatic β-cells were investigated using a differentiated insulin-secreting cell line INS-1. Adrenomedullin (1–100 pM) inhibited insulin secretion at both basal (3 mM) and high (15 mM) glucose concentrations, although this inhibitory effect was not observed at higher concentrations of adrenomedullin. The inhibition of glucose-induced insulin secretion by adrenomedullin was restored with 12-h pretreatment with 1 μg/ml pertussis toxin (PTX), suggesting that this effect could be mediated by PTX-sensitive G proteins. Cellular glucose metabolism evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide colorimetric assay was not affected by adrenomedullin at concentrations that inhibited insulin secretion. Moreover, electrophysiological studies revealed that 10 pM adrenomedullin had no effect on membrane potential, voltage-gated calcium currents, or cytosolic calcium concentration induced by 15 mM glucose. Finally, insulin release induced by cAMP-raising agents, such as forskolin plus 3-isobutyl-1-methylxanthine or the calcium ionophore ionomycin, was significantly inhibited by 10 and 100 pM adrenomedullin. In conclusion, adrenomedullin at picomolar concentrations directly inhibited insulin secretion from β-cells. This effect is likely due to the inhibition of insulin exocytosis through the activation of PTX-sensitive G proteins.


2003 ◽  
Vol 285 (2) ◽  
pp. E287-E294 ◽  
Author(s):  
Haiying Cheng ◽  
Susanne G. Straub ◽  
Geoffrey W. G. Sharp

The major physiological inhibitors of insulin secretion, norepinephrine, somatostatin, galanin, and prostaglandin E2, act via specific receptors that activate pertussis toxin (PTX)-sensitive G proteins. Four inhibitory mechanisms are known: 1) activation of ATP-sensitive K channels and repolarization of the β-cell; 2) inhibition of L-type Ca2+ channels; 3) decreased activity of adenylyl cyclase; and 4) inhibition of exocytosis at a “distal” site in stimulus-secretion coupling. We have examined the underlying mechanisms of inhibition at this distal site. In rat pancreatic islets, 2-bromopalmitate, cerulenin, and polyunsaturated fatty acids, all of which suppress protein acyltransferase activity, blocked the distal inhibitory effects of norepinephrine in a concentration-dependent manner. In contrast, control compounds such as palmitate, 16-hydroxypalmitate, and etomoxir, which do not block protein acylation, had no effect. Furthermore, 2-bromopalmitate also blocked the distal inhibitory actions of somatostatin, galanin, and prostaglandin E2. Importantly, neither 2-bromopalmitate nor cerulenin affected the action of norepinephrine to decrease cAMP production. We also examined the effects of norepinephrine, 2-bromopalmitate, and cerulenin on palmitate metabolism. Palmitate oxidation and its incorporation into lipids seemed not to contribute to the effects of 2-bromopalmitate and cerulenin on norepinephrine action. These data suggest that protein acylation mediates the distal inhibitory effect on insulin secretion. We propose that the inhibitors of insulin secretion, acting via PTX-sensitive G proteins, activate a specific protein acyltransferase, causing the acylation of a protein or proteins critical to exocytosis. This particular acylation and subsequent disruption of the essential and precise interactions involved in core complex formation would block exocytosis.


1994 ◽  
Vol 297 (2) ◽  
pp. 399-406 ◽  
Author(s):  
A Kowluru ◽  
S A Metz

Recent reports of a pertussis-toxin (Ptx)-sensitive inhibition of glucose-induced insulin release by prostaglandin E2 (PGE2) in transformed beta-cells prompted us to look for the presence of prostaglandin-regulatable GTP-binding proteins (G-proteins) on the secretory granules of normal pancreatic islets. PGE2 (but not PGF2 alpha, PGA2, PGB2 or PGD2) stimulated in a concentration-dependent manner a high-affinity GTPase activity in the secretory-granule-enriched fractions of both normal rat and human islets. Similar results were found after sucrose-density-gradient-centrifugation-based isolation of secretory granules to those after a differential-centrifugation procedure. Half-maximal stimulation occurred at 800 nM PGE2, a concentration known to inhibit both phases of glucose-induced insulin secretion from pure beta-cell lines. The GTPase stimulatory effect of PGE2 was blocked virtually totally by Ptx pretreatment; it was not due to an effect on substrate binding since no measurable effect of PGE2 on binding of guanosine 5′-[gamma-[35S]thio]triphosphate was observed in cognate fractions. Other Ptx-sensitive inhibitors of insulin secretion (such as adrenaline or clonidine) also stimulated GTPase activity, suggesting that one (or more) inhibitory exocytotic G-proteins (i.e. a putative GEi) is located on the secretory granules. These studies demonstrate, for the first time in an endocrine gland, the presence of a regulatable G-protein, strategically located on the secretory granules where it might regulate the exocytotic cascade distal to both plasma-membrane events and the generation of soluble mediators of insulin secretion.


2003 ◽  
Vol 285 (4) ◽  
pp. E669-E684 ◽  
Author(s):  
Anjaneyulu Kowluru

Emerging evidence suggests that GTP-binding proteins (G proteins) play important regulatory roles in physiological insulin secretion from the islet β-cell. Such conclusions were drawn primarily from experimental data derived through the use of specific inhibitors of G protein function. Data from gene depletion experiments appear to further substantiate key roles for these signaling proteins in the islet metabolism. The first part of this review will focus on findings supporting the hypothesis that activation of specific G proteins is essential for insulin secretion, including regulation of their function by posttranslational modifications at their COOH-terminal cysteines (e.g., isoprenylation). The second part will overview novel, non-receptor-dependent mechanism(s) whereby glucose might activate specific G proteins via protein histidine phosphorylation. The third section will review findings that appear to link abnormalities in the expression and/or functional activation of these key signaling proteins to impaired insulin secretion. It is hoped that this review will establish a basis for future research in this area of islet signal transduction, which presents a significant potential, not only in identifying key signaling proteins that are involved in physiological insulin secretion, but also in examining potential abnormalities in this signaling cascade that lead to islet dysfunction and onset of diabetes.


2007 ◽  
Vol 20 (5) ◽  
pp. 387-396 ◽  
Author(s):  
Zuzana Bacová ◽  
Martina Orecná ◽  
Roman Hafko ◽  
Vladimir Štrbák

Sign in / Sign up

Export Citation Format

Share Document