Multi-target tracking with an event-based vision sensor and a partial-update GMPHD filter

2019 ◽  
Vol 2019 (13) ◽  
pp. 127-1-127-7
Author(s):  
Benjamin J. Foster ◽  
Dong Hye Ye ◽  
Charles A. Bouman
Author(s):  
Zhuangyi Jiang ◽  
Zhenshan Bing ◽  
Kai Huang ◽  
Guang Chen ◽  
Long Cheng ◽  
...  

2009 ◽  
Vol 28 (9) ◽  
pp. 2303-2305
Author(s):  
Xiao-gang WANG ◽  
Xiao-juan WU ◽  
Xin ZHOU ◽  
Xiao-yan ZHANG

Author(s):  
Chang Joo Lee ◽  
Kyung Min Min ◽  
Hyun Duck Choi ◽  
Choon Ki Ahn ◽  
Myo Taeg Lim

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3611
Author(s):  
Yang Gong ◽  
Chen Cui

In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD (RSMC-PHD) filter is proposed. In the proposed filter, Student-t distribution is introduced to describe the unknown heavy-tailed measurement noise where the degrees of freedom (DOF) and the scale matrix of the Student-t distribution are respectively modeled as a Gamma distribution and an inverse Wishart distribution. Furthermore, the variational Bayesian (VB) technique is employed to infer the unknown DOF and scale matrix parameters while the recursion estimation framework of the RSMC-PHD filter is derived. In addition, considering that the introduced Student- t distribution might lead to an overestimation of the target number, a strategy is applied to modify the updated weight of each particle. Simulation results demonstrate that the proposed filter is effective with unknown heavy-tailed measurement noise.


Sign in / Sign up

Export Citation Format

Share Document