A novel point cloud quality assessment metric based on perceptual color distance patterns

2021 ◽  
Vol 2021 (9) ◽  
pp. 256-1-256-11
Author(s):  
Rafael Diniz ◽  
Pedro Garcia Freitas ◽  
Mylène Farias

In recent years, PCs have become very popular for a wide range of applications, such as immersive virtual reality scenarios. As a consequence, in the last couple of years, there has been a great effort to develop novel acquisition, representation, compression, and transmission solutions for PC contents in the research community. In particular, the development of objective quality assessment methods that are able to predict the perceptual quality of PCs. In this paper, we present an effective novel method for assessing the quality of PCs, which is based on descriptors that extract perceptual color distance-based texture information of PC contents, called Perceptual Color Distance Patterns (PCDP). In this framework, the statistics of the extracted information are used to model the PC visual quality. Experimental results show that the proposed framework exhibit good and robust performance when compared with several state-of-the-art point cloud quality assessment (PCQA) methods.

Author(s):  
Guangtao Zhai ◽  
Wei Sun ◽  
Xiongkuo Min ◽  
Jiantao Zhou

Low-light image enhancement algorithms (LIEA) can light up images captured in dark or back-lighting conditions. However, LIEA may introduce various distortions such as structure damage, color shift, and noise into the enhanced images. Despite various LIEAs proposed in the literature, few efforts have been made to study the quality evaluation of low-light enhancement. In this article, we make one of the first attempts to investigate the quality assessment problem of low-light image enhancement. To facilitate the study of objective image quality assessment (IQA), we first build a large-scale low-light image enhancement quality (LIEQ) database. The LIEQ database includes 1,000 light-enhanced images, which are generated from 100 low-light images using 10 LIEAs. Rather than evaluating the quality of light-enhanced images directly, which is more difficult, we propose to use the multi-exposure fused (MEF) image and stack-based high dynamic range (HDR) image as a reference and evaluate the quality of low-light enhancement following a full-reference (FR) quality assessment routine. We observe that distortions introduced in low-light enhancement are significantly different from distortions considered in traditional image IQA databases that are well-studied, and the current state-of-the-art FR IQA models are also not suitable for evaluating their quality. Therefore, we propose a new FR low-light image enhancement quality assessment (LIEQA) index by evaluating the image quality from four aspects: luminance enhancement, color rendition, noise evaluation, and structure preserving, which have captured the most key aspects of low-light enhancement. Experimental results on the LIEQ database show that the proposed LIEQA index outperforms the state-of-the-art FR IQA models. LIEQA can act as an evaluator for various low-light enhancement algorithms and systems. To the best of our knowledge, this article is the first of its kind comprehensive low-light image enhancement quality assessment study.


Author(s):  
Evangelos Alexiou ◽  
Irene Viola ◽  
Tomás M. Borges ◽  
Tiago A. Fonseca ◽  
Ricardo L. de Queiroz ◽  
...  

Abstract Recent trends in multimedia technologies indicate the need for richer imaging modalities to increase user engagement with the content. Among other alternatives, point clouds denote a viable solution that offers an immersive content representation, as witnessed by current activities in JPEG and MPEG standardization committees. As a result of such efforts, MPEG is at the final stages of drafting an emerging standard for point cloud compression, which we consider as the state-of-the-art. In this study, the entire set of encoders that have been developed in the MPEG committee are assessed through an extensive and rigorous analysis of quality. We initially focus on the assessment of encoding configurations that have been defined by experts in MPEG for their core experiments. Then, two additional experiments are designed and carried to address some of the identified limitations of current approach. As part of the study, state-of-the-art objective quality metrics are benchmarked to assess their capability to predict visual quality of point clouds under a wide range of radically different compression artifacts. To carry the subjective evaluation experiments, a web-based renderer is developed and described. The subjective and objective quality scores along with the rendering software are made publicly available, to facilitate and promote research on the field.


Algorithms ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 313
Author(s):  
Domonkos Varga

The goal of full-reference image quality assessment (FR-IQA) is to predict the perceptual quality of an image as perceived by human observers using its pristine (distortion free) reference counterpart. In this study, we explore a novel, combined approach which predicts the perceptual quality of a distorted image by compiling a feature vector from convolutional activation maps. More specifically, a reference-distorted image pair is run through a pretrained convolutional neural network and the activation maps are compared with a traditional image similarity metric. Subsequently, the resulting feature vector is mapped onto perceptual quality scores with the help of a trained support vector regressor. A detailed parameter study is also presented in which the design choices of the proposed method is explained. Furthermore, we study the relationship between the amount of training images and the prediction performance. Specifically, it is demonstrated that the proposed method can be trained with a small amount of data to reach high prediction performance. Our best proposal—called ActMapFeat—is compared to the state-of-the-art on six publicly available benchmark IQA databases, such as KADID-10k, TID2013, TID2008, MDID, CSIQ, and VCL-FER. Specifically, our method is able to significantly outperform the state-of-the-art on these benchmark databases.


Author(s):  
Mingliang Xu ◽  
Qingfeng Li ◽  
Jianwei Niu ◽  
Hao Su ◽  
Xiting Liu ◽  
...  

Quick response (QR) codes are usually scanned in different environments, so they must be robust to variations in illumination, scale, coverage, and camera angles. Aesthetic QR codes improve the visual quality, but subtle changes in their appearance may cause scanning failure. In this article, a new method to generate scanning-robust aesthetic QR codes is proposed, which is based on a module-based scanning probability estimation model that can effectively balance the tradeoff between visual quality and scanning robustness. Our method locally adjusts the luminance of each module by estimating the probability of successful sampling. The approach adopts the hierarchical, coarse-to-fine strategy to enhance the visual quality of aesthetic QR codes, which sequentially generate the following three codes: a binary aesthetic QR code, a grayscale aesthetic QR code, and the final color aesthetic QR code. Our approach also can be used to create QR codes with different visual styles by adjusting some initialization parameters. User surveys and decoding experiments were adopted for evaluating our method compared with state-of-the-art algorithms, which indicates that the proposed approach has excellent performance in terms of both visual quality and scanning robustness.


2020 ◽  
Vol 36 (10) ◽  
pp. 3011-3017 ◽  
Author(s):  
Olga Mineeva ◽  
Mateo Rojas-Carulla ◽  
Ruth E Ley ◽  
Bernhard Schölkopf ◽  
Nicholas D Youngblut

Abstract Motivation Methodological advances in metagenome assembly are rapidly increasing in the number of published metagenome assemblies. However, identifying misassemblies is challenging due to a lack of closely related reference genomes that can act as pseudo ground truth. Existing reference-free methods are no longer maintained, can make strong assumptions that may not hold across a diversity of research projects, and have not been validated on large-scale metagenome assemblies. Results We present DeepMAsED, a deep learning approach for identifying misassembled contigs without the need for reference genomes. Moreover, we provide an in silico pipeline for generating large-scale, realistic metagenome assemblies for comprehensive model training and testing. DeepMAsED accuracy substantially exceeds the state-of-the-art when applied to large and complex metagenome assemblies. Our model estimates a 1% contig misassembly rate in two recent large-scale metagenome assembly publications. Conclusions DeepMAsED accurately identifies misassemblies in metagenome-assembled contigs from a broad diversity of bacteria and archaea without the need for reference genomes or strong modeling assumptions. Running DeepMAsED is straight-forward, as well as is model re-training with our dataset generation pipeline. Therefore, DeepMAsED is a flexible misassembly classifier that can be applied to a wide range of metagenome assembly projects. Availability and implementation DeepMAsED is available from GitHub at https://github.com/leylabmpi/DeepMAsED. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Author(s):  
Mehrdad Shoeiby ◽  
Mohammad Ali Armin ◽  
Sadegh Aliakbarian ◽  
Saeed Anwar ◽  
Lars petersson

<div>Advances in the design of multi-spectral cameras have</div><div>led to great interests in a wide range of applications, from</div><div>astronomy to autonomous driving. However, such cameras</div><div>inherently suffer from a trade-off between the spatial and</div><div>spectral resolution. In this paper, we propose to address</div><div>this limitation by introducing a novel method to carry out</div><div>super-resolution on raw mosaic images, multi-spectral or</div><div>RGB Bayer, captured by modern real-time single-shot mo-</div><div>saic sensors. To this end, we design a deep super-resolution</div><div>architecture that benefits from a sequential feature pyramid</div><div>along the depth of the network. This, in fact, is achieved</div><div>by utilizing a convolutional LSTM (ConvLSTM) to learn the</div><div>inter-dependencies between features at different receptive</div><div>fields. Additionally, by investigating the effect of different</div><div>attention mechanisms in our framework, we show that a</div><div>ConvLSTM inspired module is able to provide superior at-</div><div>tention in our context. Our extensive experiments and anal-</div><div>yses evidence that our approach yields significant super-</div><div>resolution quality, outperforming current state-of-the-art</div><div>mosaic super-resolution methods on both Bayer and multi-</div><div>spectral images. Additionally, to the best of our knowledge,</div><div>our method is the first specialized method to super-resolve</div><div>mosaic images, whether it be multi-spectral or Bayer.</div><div><br></div>


Author(s):  
M. Kosmatin Fras ◽  
A. Kerin ◽  
M. Mesarič ◽  
V. Peterman ◽  
D. Grigillo

Production of digital terrain model (DTM) is one of the most usual tasks when processing photogrammetric point cloud generated from Unmanned Aerial System (UAS) imagery. The quality of the DTM produced in this way depends on different factors: the quality of imagery, image orientation and camera calibration, point cloud filtering, interpolation methods etc. However, the assessment of the real quality of DTM is very important for its further use and applications. In this paper we first describe the main steps of UAS imagery acquisition and processing based on practical test field survey and data. The main focus of this paper is to present the approach to DTM quality assessment and to give a practical example on the test field data. For data processing and DTM quality assessment presented in this paper mainly the in-house developed computer programs have been used. The quality of DTM comprises its accuracy, density, and completeness. Different accuracy measures like RMSE, median, normalized median absolute deviation and their confidence interval, quantiles are computed. The completeness of the DTM is very often overlooked quality parameter, but when DTM is produced from the point cloud this should not be neglected as some areas might be very sparsely covered by points. The original density is presented with density plot or map. The completeness is presented by the map of point density and the map of distances between grid points and terrain points. The results in the test area show great potential of the DTM produced from UAS imagery, in the sense of detailed representation of the terrain as well as good height accuracy.


Author(s):  
Yun-Peng Liu ◽  
Ning Xu ◽  
Yu Zhang ◽  
Xin Geng

The performances of deep neural networks (DNNs) crucially rely on the quality of labeling. In some situations, labels are easily corrupted, and therefore some labels become noisy labels. Thus, designing algorithms that deal with noisy labels is of great importance for learning robust DNNs. However, it is difficult to distinguish between clean labels and noisy labels, which becomes the bottleneck of many methods. To address the problem, this paper proposes a novel method named Label Distribution based Confidence Estimation (LDCE). LDCE estimates the confidence of the observed labels based on label distribution. Then, the boundary between clean labels and noisy labels becomes clear according to confidence scores. To verify the effectiveness of the method, LDCE is combined with the existing learning algorithm to train robust DNNs. Experiments on both synthetic and real-world datasets substantiate the superiority of the proposed algorithm against state-of-the-art methods.


Author(s):  
Anass Nouri ◽  
Christophe Charrier ◽  
Olivier Lezoray

This chapter concerns the visual saliency and the perceptual quality assessment of 3D meshes. Firstly, the chapter proposes a definition of visual saliency and describes the state-of-the-art methods for its detection on 3D mesh surfaces. A focus is made on a recent model of visual saliency detection for 3D colored and non-colored meshes whose results are compared with a ground-truth saliency as well as with the literature's methods. Since this model is able to estimate the visual saliency on 3D colored meshes, named colorimetric saliency, a description of the construction of a 3D colored mesh database that was used to assess its relevance is presented. The authors also describe three applications of the detailed model that respond to the problems of viewpoint selection, adaptive simplification and adaptive smoothing. Secondly, two perceptual quality assessment metrics for 3D non-colored meshes are described, analyzed, and compared with the state-of-the-art approaches.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Rafal Obuchowicz ◽  
Mariusz Oszust ◽  
Adam Piorkowski

Abstract Background The perceptual quality of magnetic resonance (MR) images influences diagnosis and may compromise the treatment. The purpose of this study was to evaluate how the image quality changes influence the interobserver variability of their assessment. Methods For the variability evaluation, a dataset containing distorted MRI images was prepared and then assessed by 31 experienced medical professionals (radiologists). Differences between observers were analyzed using the Fleiss’ kappa. However, since the kappa evaluates the agreement among radiologists taking into account aggregated decisions, a typically employed criterion of the image quality assessment (IQA) performance was used to provide a more thorough analysis. The IQA performance of radiologists was evaluated by comparing the Spearman correlation coefficients, ρ, between individual scores with the mean opinion scores (MOS) composed of the subjective opinions of the remaining professionals. Results The experiments show that there is a significant agreement among radiologists (κ=0.12; 95% confidence interval [CI]: 0.118, 0.121; P<0.001) on the quality of the assessed images. The resulted κ is strongly affected by the subjectivity of the assigned scores, separately presenting close scores. Therefore, the ρ was used to identify poor performance cases and to confirm the consistency of the majority of collected scores (ρmean = 0.5706). The results for interns (ρmean = 0.6868) supports the finding that the quality assessment of MR images can be successfully taught. Conclusions The agreement observed among radiologists from different imaging centers confirms the subjectivity of the perception of MR images. It was shown that the image content and severity of distortions affect the IQA. Furthermore, the study highlights the importance of the psychosomatic condition of the observers and their attitude.


Sign in / Sign up

Export Citation Format

Share Document