Feature-based Surrogate-assisted Harris Hawks Optimization Algorithm for Microwave Filters

Author(s):  
Yaxi Jiao ◽  
Zhen Zhang ◽  
Yang Yu ◽  
Qingsha S. Cheng
Author(s):  
Maofu Liu ◽  
Huijun Hu

The image shape feature can be described by the image Zernike moments. In this chapter, the authors point out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. Therefore, the optimization algorithm based on evolutionary computation is designed and implemented in this chapter to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Weitao Ha ◽  
Zahra Vahedi

Breast cancer is an unusual mass of the breast texture. It begins with an abnormal change in cell structure. This disease may increase uncontrollably and affects neighboring textures. Early diagnosis of this cancer (abnormal cell changes) can help definitively treat it. Also, prevention of this cancer can help to decrease the high cost of medical caring for breast cancer patients. In recent years, the computer-aided technique is an important active field for automatic cancer detection. In this study, an automatic breast tumor diagnosis system is introduced. An improved Deer Hunting Optimization Algorithm (DHOA) is used as the optimization algorithm. The presented method utilized a hybrid feature-based technique and a new optimized convolutional neural network (CNN). Simulations are applied to the DCE-MRI dataset based on some performance indexes. The novel contribution of this paper is to apply the preprocessing stage to simplifying the classification. Besides, we used a new metaheuristic algorithm. Also, the feature extraction by Haralick texture and local binary pattern (LBP) is recommended. Due to the obtained results, the accuracy of this method is 98.89%, which represents the high potential and efficiency of this method.


Author(s):  
O. , Bhaskaru ◽  
M. Sreedevi

At present, health disorder is growing day by way of the day due to existence lifestyle, hereditary. Particularly, heart disease has ended up greater frequent these days. Heart disorder prognosis technique is very quintessential and integral trouble for the patient's health. Besides, it will help out to limit disorder to a larger distinctive level. The role of using strategy like machine learning and algorithm such as heart disease diagnosis using Data Mining(DM) techniques is very significant. In the previous system, the Fuzzy Extreme Learning Machine (FELM) was proposed to predict heart disease, ensuring an accurate and timely diagnosis. However, it only achieves 87.14 % of accuracy. To improve the classification accuracy, the proposed system designed an Improved Step Adjustment based Glowworm Swarm Optimization Algorithm with Weighted Feature based Support Vector Machine (ISAGSO-WFSVM) for Heart disease diagnosis. This proposed venture utilizes the dataset of heart disease for input. Using the Improved Step Adjustment based Glowworm Swarm Optimization Algorithm (ISAGSO) to enhance the true positive rate, optimal features are then selected. Finally, with the aid of the Weighted Feature based Support Vector Machine (WFSVM) classifier, classification is carried out relying selected features. In the proposed method, better performance obtained and that is validated through the experimental results in terms of precision, accuracy, recall and f-measures


Sign in / Sign up

Export Citation Format

Share Document