high dimension
Recently Published Documents


TOTAL DOCUMENTS

595
(FIVE YEARS 157)

H-INDEX

34
(FIVE YEARS 3)

2023 ◽  
Author(s):  
Guorong Dai ◽  
Ursula Müller ◽  
Raymond James Carroll

Author(s):  
Jing Wang ◽  
Jinglin Zhou ◽  
Xiaolu Chen

AbstractIndustrial data variables show obvious high dimension and strong nonlinear correlation. Traditional multivariate statistical monitoring methods, such as PCA, PLS, CCA, and FDA, are only suitable for solving the high-dimensional data processing with linear correlation. The kernel mapping method is the most common technique to deal with the nonlinearity, which projects the original data in the low-dimensional space to the high-dimensional space through appropriate kernel functions so as to achieve the goal of linear separability in the new space. However, the space projection from the low dimension to the high dimension is contradictory to the actual requirement of dimensionality reduction of the data. So kernel-based method inevitably increases the complexity of data processing.


2021 ◽  
Vol 12 (4) ◽  
pp. 255
Author(s):  
Shuna Jiang ◽  
Qi Li ◽  
Rui Gan ◽  
Weirong Chen

To solve the problem of water management subsystem fault diagnosis in a proton exchange membrane fuel cell (PEMFC) system, a novel approach based on learning vector quantization neural network (LVQNN) and kernel principal component analysis (KPCA) is proposed. In the proposed approach, the KPCA method is used for processing strongly coupled fault data with a high dimension to reduce the data dimension and to extract new low-dimensional fault feature data. The LVQNN method is used to carry out fault recognition using the fault feature data. The effectiveness of the proposed fault detection method is validated using the experimental data of the PEMFC power system. Results show that the proposed method can quickly and accurately diagnose the three health states: normal state, water flooding failure and membrane dry failure, and the recognition accuracy can reach 96.93%. Therefore, the method proposed in this paper is suitable for processing the fault data with a high dimension and abundant quantities, and provides a reference for the application of water management subsystem fault diagnosis of PEMFC.


2021 ◽  
Author(s):  
Liang Chen

Abstract In this paper, we theoretically propose a new hashing scheme to establish the sparse Fourier transform in high-dimension space. The estimation of the algorithm complexity shows that this sparse Fourier transform can overcome the curse of dimensionality. To the best of our knowledge, this is the first polynomial-time algorithm to recover the high-dimensional continuous frequencies.


2021 ◽  
Vol 18 (23) ◽  
pp. 680
Author(s):  
Mohammad Reza Faisal ◽  
Radityo Adi Nugroho ◽  
Rahmat Ramadhani ◽  
Friska Abadi ◽  
Rudy Herteno ◽  
...  

Researchers have collected Twitter data to study a wide range of topics, one of which is a natural disaster. A social network sensor was developed in existing research to filter natural disaster information from direct eyewitnesses, none eyewitnesses, and non-natural disaster information. It can be used as a tool for early warning or monitoring when natural disasters occur. The main component of the social network sensor is the text tweet classification. Similar to text classification research in general, the challenge is the feature extraction method to convert Twitter text into structured data. The strategy commonly used is vector space representation. However, it has the potential to produce high dimension data. This research focuses on the feature extraction method to resolve high dimension data issues. We propose a hybrid approach of word2vec-based and lexicon-based feature extraction to produce new features. The Experiment result shows that the proposed method has fewer features and improves classification performance with an average AUC value of 0.84, and the number of features is 150. The value is obtained by using only the word2vec-based method. In the end, this research shows that lexicon-based did not influence the improvement in the performance of social network sensor predictions in natural disasters. HIGHLIGHTS Implementation of text classification is generally only used to perform sentiment analysis, it is still rare to use it to perform text classification for use in determining direct eyewitnesses in cases of natural disasters One of the common problems in text mining research is the extracted features from the vector space representation method generate high dimension data A hybrid approach of word2vec-based and lexicon-based feature extraction experiment was conducted in order to find a method that can generate new features with low dimensions and also improve the classification performance GRAPHICAL ABSTRACT


Sign in / Sign up

Export Citation Format

Share Document