IPv6 DoS Attacks Detection Using Machine Learning Enhanced IDS in SDN/NFV Environment

Author(s):  
Chia-Wei Tseng ◽  
Li-Fan Wu ◽  
Shih-Chun Hsu ◽  
Sheng-Wang Yu
Keyword(s):  
Author(s):  
Mauricio Dominguez-Limaico ◽  
Edgar Maya-Olalla ◽  
Carlos Bosmediano-Cardenas ◽  
Charles Escobar-Teran ◽  
Juan Francisco Chafla-Altamirano ◽  
...  

Information ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 279 ◽  
Author(s):  
Bambang Susilo ◽  
Riri Fitri Sari

The internet has become an inseparable part of human life, and the number of devices connected to the internet is increasing sharply. In particular, Internet of Things (IoT) devices have become a part of everyday human life. However, some challenges are increasing, and their solutions are not well defined. More and more challenges related to technology security concerning the IoT are arising. Many methods have been developed to secure IoT networks, but many more can still be developed. One proposed way to improve IoT security is to use machine learning. This research discusses several machine-learning and deep-learning strategies, as well as standard datasets for improving the security performance of the IoT. We developed an algorithm for detecting denial-of-service (DoS) attacks using a deep-learning algorithm. This research used the Python programming language with packages such as scikit-learn, Tensorflow, and Seaborn. We found that a deep-learning model could increase accuracy so that the mitigation of attacks that occur on an IoT network is as effective as possible.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Francisco Sales de Lima Filho ◽  
Frederico A. F. Silveira ◽  
Agostinho de Medeiros Brito Junior ◽  
Genoveva Vargas-Solar ◽  
Luiz F. Silveira

Users and Internet service providers (ISPs) are constantly affected by denial-of-service (DoS) attacks. This cyber threat continues to grow even with the development of new protection technologies. Developing mechanisms to detect this threat is a current challenge in network security. This article presents a machine learning- (ML-) based DoS detection system. The proposed approach makes inferences based on signatures previously extracted from samples of network traffic. The experiments were performed using four modern benchmark datasets. The results show an online detection rate (DR) of attacks above 96%, with high precision (PREC) and low false alarm rate (FAR) using a sampling rate (SR) of 20% of network traffic.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 51
Author(s):  
Swathi Sambangi ◽  
Lakshmeeswari Gondi

The problem of identifying Distributed Denial of Service (DDos) attacks is fundamentally a classification problem in machine learning. In relevance to Cloud Computing, the task of identification of DDoS attacks is a significantly challenging problem because of computational complexity that has to be addressed. Fundamentally, a Denial of Service (DoS) attack is an intentional attack attempted by attackers from single source which has an implicit intention of making an application unavailable to the target stakeholder. For this to be achieved, attackers usually stagger the network bandwidth, halting system resources, thus causing denial of access for legitimate users. Contrary to DoS attacks, in DDoS attacks, the attacker makes use of multiple sources to initiate an attack. DDoS attacks are most common at network, transportation, presentation and application layers of a seven-layer OSI model. In this paper, the research objective is to study the problem of DDoS attack detection in a Cloud environment by considering the most popular CICIDS 2017 benchmark dataset and applying multiple regression analysis for building a machine learning model to predict DDoS and Bot attacks through considering a Friday afternoon traffic logfile.


Author(s):  
K. Lakshmi Narayanan ◽  
R. Santhana Krishnan ◽  
E. Golden Julie ◽  
Y. Harold Robinson ◽  
Vimal Shanmuganathan

In todays era the need of security is raising due to hike in security risks discovered every day. A new vulnerability can be found in any software or product by the attacker as it launches in the market. Botnet carried out various attacks in distributed manner which results in extensive disruption of network activity through information and identity theft, email spamming, click fraud DDoS (Distributed Denial of Service) attacks, virtual deceit and distributed resource usage for cryptocurrency mining.The main aim f botnet is to steal private data of clients,sendind spam and viruses and DOS attacks in the network. The detection of Botnet like Rbot ,Virut and Neris are still vigorous research area due to unavailability of any technique to detect the entire ecosystem of botnet. As they are comprised of different configurations and profoundly armored by malwares writers to dodge detection systems by utilizing complicated dodging techniques. Hence only solution is to discover the infected botnets to control over the services and ports. This work aims to contribute in the botnet detection with its overview and existing methods. The study focuses on techniques like one-hot encoding and variance thresholding. These techniques are utilized to clean the botnet dataset. The performance of the machine learning model can be improved with feature selection methods. The work explores the dataset imbalance problem with the help of ensemble machine learning techniques. The performance is evaluated on the best received model that is trained and tested on datasets of various attacks.


2020 ◽  
Vol 15 (3/4) ◽  
pp. 256
Author(s):  
Deepak Kumar ◽  
Vinay Kukreja ◽  
Virender Kadyan ◽  
Mohit Mittal

Sign in / Sign up

Export Citation Format

Share Document