Two-degree-of-freedom fractional order internal model controller design for non-integer order process with time-delay

Author(s):  
Dong Jia ◽  
Cui Yanjun ◽  
Wang Zhiqiang
Author(s):  
Sharad P. Jadhav ◽  
Rajan H. Chile ◽  
Satish T. Hamde

Fractional-order modeling and controller design by a simplified way is the demanding research area and is gearing more and more momentum. This paper is the attempt of application of fractional-order modeling and controller design for the power plant gas turbine. The Gas Turbine is most important equipment in power, aviation and automotive industry. It converts the thermal energy of fuel into the mechanical power. Therefore, important requirement of gas turbine system is to control the flow of input fuel. The existing identified model of the gas turbine between the input fuel flow and the output speed, is of high-order and integer type, which is reduced to the simple and compact integer-order (IO) and fractional-order (FO) models using local optimization technique. The fractional-order internal model controller (FO-IMC) is designed and to show the performance efficacy it is compared with integer-order internal model controller (IO-IMC), which is also designed using the same methodology and specification. Simulation results show that FO-IMC based controller gives better performance for the set point tracking, plant uncertainty and disturbance rejection than the IO-IMC. FO-IMC controller also satisfy the robust stability condition.


2012 ◽  
Vol 236-237 ◽  
pp. 356-359 ◽  
Author(s):  
Ling Quan ◽  
Hai Long Zhang

Multivariable system with time delay and coupling widely exist in industrial which may destroy the normal work of control system. An unconventional internal model controller design method will be introduced in this paper. The closed loop system can be decouple by calculate the inverse of transfer function matrix and the optimal diagonal decomposition matrix. Finally, this method was applied in a multivariable system with different time delays, the simulation results can show the effectiveness of this method.


2020 ◽  
Vol 53 (5-6) ◽  
pp. 841-849 ◽  
Author(s):  
Sheng Wu ◽  
Ziwei Li ◽  
Ridong Zhang

In this article, an enhanced 2-degree-of-freedom internal model control strategy for typical industrial processes with time-delay is developed. For the proposed controller, it is composed of an inner loop feedback controller which is designed based on the internal model control theory and a weighted set-point tracking controller. Note that the adjustment of set-point tracking performance and disturbance rejection characteristics can be decoupled by employing the developed strategy, which indicates that more degrees of freedom are obtained for the proposed controller design; thus, better ensemble performance and stronger robustness are anticipated by regulating these two controllers separately, which may not be achieved in the conventional internal model control method. Case studies on two kinds of stable processes with time-delay verify the effectiveness of the proposed scheme finally.


Author(s):  
Yan Ti ◽  
Kangcheng Zheng ◽  
Wanzhong Zhao ◽  
Tinglun Song

To improve handling and stability for distributed drive electric vehicles (DDEV), the study on four wheel steering (4WS) systems can improve the vehicle driving performance through enhancing the tracking capability to desired vehicle state. Most previous controllers are either a large amount of calculation, or requires a lot of experimental data, these are relatively time-consuming and laborious. According to the front and rear wheel steering angle of DDEV can be distributed independently, a novel controller named internal model controller with fractional-order filter (IMC-FOF) for 4WS systems is proposed and studied in this paper. The IMC-FOF is designed using the internal model control theory and compared with IMC and PID controller. The influence of time constant and fractional-order parameters which is optimized using quantum genetic algorithms (QGA) on tracking ability of vehicle state are also analyzed. Using a production vehicle as an example, the simulation is performed combining Matlab/Simulink and CarSim. The comparison results indicated that the proposed controller presents performance to distribute the front and rear wheel steering angle for ensuring better tracking capability to desired vehicle state, meanwhile it possesses strong robustness.


2021 ◽  
Vol 11 (15) ◽  
pp. 6693
Author(s):  
Sagar Gupta ◽  
Abhaya Pal Singh ◽  
Dipankar Deb ◽  
Stepan Ozana

Robotic manipulators have been widely used in industries, mainly to move tools into different specific positions. Thus, it has become necessary to have accurate knowledge about the tool position using forward kinematics after accessing the angular locations of limbs. This paper presents a simulation study in which an encoder attached to the limbs gathers information about the angular positions. The measured angles are applied to the Kalman Filter (KF) and its variants for state estimation. This work focuses on the use of fractional order controllers with a Two Degree of Freedom Serial Flexible Links (2DSFL) and Two Degree of Freedom Serial Flexible Joint (2DSFJ) and undertakes simulations with noise and a square wave as input. The fractional order controllers fit better with the system properties than integer order controllers. The KF and its variants use an unknown and assumed process and measurement noise matrices to predict the actual data. An optimisation problem is proposed to achieve reasonable estimations with the updated covariance matrices.


2017 ◽  
Vol 37 (3) ◽  
pp. 554-564
Author(s):  
Canchang Liu ◽  
Chicheng Ma ◽  
Jilei Zhou ◽  
Lu Liu ◽  
Shuchang Yue ◽  
...  

A two-degree-of-freedom nonlinear vibration system of a quarter vehicle suspension system is studied by using the feedback control method considered the fractional-order derivative damping. The nonlinear dynamic model of two-degree-of-freedom vehicle suspension system is built and linear velocity and displacement controllers are used to control the nonlinear vibration of the vehicle suspension system. A case of the 1:1 internal resonance is considered. The amplitude–frequency response is obtained with the multiscale method. The asymptotic stability conditions of the nonlinear system can be gotten by using the Routh–Hurwitz criterion and the ranges of control parameters are gained in the condition of stable solutions to the system. The simulation results show that the feedback control can effectively reduce the amplitude of primary resonance, weaken or even eliminate the nonlinear vibration characteristics of the suspension system. Fractional orders have an impact on control performance, which should be considered in the control problem. The study will provide a theoretical basis and reference for the optimal design of the vehicle suspension system.


Sign in / Sign up

Export Citation Format

Share Document