Coordinated control for multiple underactuated underwater vehicles with time delay in game theory frame

Author(s):  
Xue Qi
2021 ◽  
Vol 11 (19) ◽  
pp. 9145
Author(s):  
Siddig M. Elkhider ◽  
Omar Al-Buraiki ◽  
Sami El-Ferik

This paper addresses the problem of controlling a heterogeneous system composed of multiple Unmanned Aerial Vehicles (UAVs) and Autonomous Underwater Vehicles (AUVs) for formation and containment maintenance. The proposed approach considers actuator time delay and, in addition to formation and containment, considers obstacle avoidance, and offers a robust navigation algorithm and uses a reliable middleware for data transmission and exchange. The methodology followed uses both flocking technique and modified L1 adaptive control to ensure the proper navigation and coordination while avoiding obstacles. The data exchange between all the agents is provided through the data distribution services (DDS) middleware, which solves the interoperability issue when dealing with heterogeneous multiagent systems. The modified L1 controller is a local controller for stabilizing the dynamic model of each UAV and AUV, and the flocking approach is used to coordinate the followers around the leader or within the space delimited by their leaders. Potential Field (PF) allows obstacle avoidance during the agents’ movement. The performance of the proposed approach under the considerations mentioned above are verified and demonstrated using simulations.


2002 ◽  
Vol 11 (3) ◽  
pp. 277-291 ◽  
Author(s):  
Nak Young Chong ◽  
Shun'ichi Kawabata ◽  
Kohtaro Ohba ◽  
Tetsuo Kotoku ◽  
Kiyoshi Komoriya ◽  
...  

In this paper, various coordinated control schemes are explored in Multioperatormultirobot (MOMR) teleoperation through a communication network with time delay. Over the past decades, problems and several notable results have been reported mainly in the Single-Operator–Single-Robot (SOSR) teleoperation system. Recently, the need for cooperation has rapidly emerged in many possible applications such as plant maintenance, construction, and surgery, because multirobot cooperation would have a significant advantage over a single robot in such cases. Thus, there is a growing interest in the control of multirobot systems in remote teleoperation, too. However, the time delay over the network would pose a more difficult problem to MOMR teleoperation systems and seriously affect their performance. In this work, our recent efforts devoted to the coordinated control of the MOMR teleoperation is described. First, we build a virtual experimental test bed to investigate the cooperation between two telerobots in remote environments. Then, different coordinated control aids are proposed to cope with collisions arising from delayed visual feedback from the remote location. To verify the validity of the proposed schemes, we perform extensive simulations of various planar rearrangement tasks employing local and remote graphics simulators over an ethernet LAN subject to a simulated communication delay.


2005 ◽  
Vol 18 (3) ◽  
pp. 547-558 ◽  
Author(s):  
Jin Fude ◽  
Jing Yuanwei ◽  
Zhou Jianhua ◽  
Khosrow Sohraby ◽  
Georgi Dimirovski

The problem of pricing equilibrium of multi-service priority-based net- work is studied by using incentive strategy in Stackelberg game theory. First some concepts in game theory were introduced. Then, the existing results on two-user two-level Nash problem was introduced briefly. A new one-leader two-user two-level incentive Stackblberg strategy is presented by employing the time delay in the strategy.


Author(s):  
Binbin Li ◽  
Yaoyao Wang ◽  
Kangwu Zhu ◽  
Bai Chen ◽  
Hongtao Wu

Aiming at the requirements of lightweight, low energy consumption and low inertia of the manipulators for autonomous underwater vehicles, this article presents a novel underwater cable-driven manipulator for autonomous underwater vehicles. Thanks to the cable-driven mechanism, the motors are installed remotely from joints, which can reduce the disturbance of the motion of the manipulator to the system and extend the operation time under the premise of limited energy. Cable–sheath mechanism is used to realize the motors to be fixedly mounted on the base (postposition). A prototype named Polaris-II is assembled, and experiments are carried out with the time-delay control scheme. Although the control effect of a single time-delay controller is good, there exist large errors caused by the reversing of joints. Therefore, a fuzzy compensator is designed and added to the time-delay controller to suppress the large errors. The experimental results show that the time-delay controller with a fuzzy compensator has a good inhibitory effect on the large errors while maintaining good control effect.


Sign in / Sign up

Export Citation Format

Share Document