l1 adaptive control
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 23)

H-INDEX

10
(FIVE YEARS 2)

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2125
Author(s):  
Zian Wang ◽  
Shengchen Mao ◽  
Zheng Gong ◽  
Chi Zhang ◽  
Jun He

A new landing strategy is presented for manned electric vertical takeoff and landing (eVTOL) vehicles, using a roll maneuver to obtain a trajectory in the horizontal plane. This strategy rejects the altitude surging in the landing process, which is the fatal drawback of the conventional jumping strategy. The strategy leads to a smoother transition from the wing-borne mode to the thrust-borne mode, and has a higher energy efficiency, meaning a better flight experience and higher economic performance. To employ the strategy, a five-stage maneuver is designed, using the lateral maneuver instead of longitudinal climbing. Additionally, a control system based on L1 adaptive control theory is designed to assist manned driving or execute flight missions independently, consisting of the guidance logic, stability augmentation system and flight management unit. The strategy is verified with the ET120 platform, by Monte Carlo simulation for robustness and safety performance, and an experiment was performed to compare the benefits with conventional landing strategies. The results show that the performance of the control system is robust enough to reduce perturbation by at least 20% in all modeling parameters, and ensures consistent dynamic characteristics between different flight modes. Additionally, the strategy successfully avoids climbing during the landing process with a smooth trajectory, and reduces the energy consumed for landing by 64%.


2021 ◽  
Vol 11 (19) ◽  
pp. 9145
Author(s):  
Siddig M. Elkhider ◽  
Omar Al-Buraiki ◽  
Sami El-Ferik

This paper addresses the problem of controlling a heterogeneous system composed of multiple Unmanned Aerial Vehicles (UAVs) and Autonomous Underwater Vehicles (AUVs) for formation and containment maintenance. The proposed approach considers actuator time delay and, in addition to formation and containment, considers obstacle avoidance, and offers a robust navigation algorithm and uses a reliable middleware for data transmission and exchange. The methodology followed uses both flocking technique and modified L1 adaptive control to ensure the proper navigation and coordination while avoiding obstacles. The data exchange between all the agents is provided through the data distribution services (DDS) middleware, which solves the interoperability issue when dealing with heterogeneous multiagent systems. The modified L1 controller is a local controller for stabilizing the dynamic model of each UAV and AUV, and the flocking approach is used to coordinate the followers around the leader or within the space delimited by their leaders. Potential Field (PF) allows obstacle avoidance during the agents’ movement. The performance of the proposed approach under the considerations mentioned above are verified and demonstrated using simulations.


2021 ◽  
Author(s):  
Hossein Ahmadian ◽  
Mehdi Arefi ◽  
Alireza Khayatian ◽  
Allahyar Montazeri

Abstract In this paper, a new L1 adaptive back-stepping controller based on the barrier Lyapunov function (BLF) is proposed to respect the position and velocity constraints usually imposed in designing Euler-Lagrange systems. The purpose of this investigation is to improve different aspects of a conventional L1 adaptive control. More specifically, the modified controller has a lower complexity by removing the low-pass filter from the design procedure. The performance of the controller is also enhanced by having a faster convergence speed and increased robustness against nonlinear uncertainties and disturbances arising in practical applications. The proposed scheme is evaluated on two different Euler-Lagrange systems, i.e. a 6-DOF remotely operated vehicle (ROV) and a single-link manipulator. The results for the new back-stepping design are assessed in both scenarios in terms of settling time, percentage of overshoot, and trajectory tracking error. The results confirm that both tracking and state estimation errors for position and velocity outputs outperform the standard L1 adaptive control technique. The results also demonstrate the high performance of the proposed approach in removing the matched nonlinear time-varying disturbances and dynamic uncertainties and a good trajectory tracking despite the uncertainty on the input gain of the system.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 176
Author(s):  
Zhaoying Li ◽  
Shuai Shi

This paper investigates the fault tolerance control of hypersonic aircrafts with L1 adaptive control method in the presence of loss of actuator effectiveness fault. The hypersonic model considers the uncertainties caused by the features of nonlinearities and couplings. Elasticity is taken into account in hypersonic vehicle modeling which makes the model more accurate. A velocity L1 adaptive controller and an altitude L1 adaptive controller are designed to control flexible hypersonic vehicle model with actuator loss fault. A PID controller is designed as well for comparison. Finally, the simulation results are used to analyze the effectiveness of the controller. Compared to the results of PID controller, L1 controllers have better performance.


2021 ◽  
Vol 11 (7) ◽  
pp. 3288
Author(s):  
Jiangwei Zhao ◽  
Dongsu Wu ◽  
Hongbin Gu

In the design of the six degrees of freedom (6-DOF) flight simulation system, the unmodeled dynamic, transient performance and steady-state performance of the system are generally concerned. Considering that the model of flight simulation system is highly nonlinear and requires high response speed and high stability, this paper applies L1 adaptive controller to the control of flight simulation platform. The controller has a low-pass filter in feedback loop to avoid high frequencies in the control signals, and the required transient performance can be enhanced by increasing the adaptive gain, which can improve the transient, stability, and smoothness of the flight simulator platform. The performance of the L1 adaptive controller is obtained by comparison with the traditional model reference adaptive controller (MRAC). In addition to maintaining the good transient response of MRAC, the L1 adaptive controller improves the stability of the system. The output amplitude of the actuator is reduced by 39.95%, which effectively reduces the performance requirements of the actuator. Some additional experimental evaluations are carried out to show the performance of the controller.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Zian Wang ◽  
Zheng Gong ◽  
Chi Zhang ◽  
Jun He ◽  
Shengchen Mao

Author(s):  
Song Tian ◽  
Jiang Wang ◽  
Defu Lin ◽  
Pei Pei

This article presents L1 adaptive control scheme for vertical flight control of helicopter. Linear controller is designed as baseline controller to provide preliminary improvement in performance and robustness. Considering the existence of uncertainties and disturbances, we propose L1 adaptive controller with modified piecewise constant adaptation law to augment the baseline controllers. Further, the proposed L1 adaptive controller can be implemented without any modification of the baseline controller. Benefit from this, the design of the entire control system is significantly simplified, and the designed controller is easy to apply to practical engineering. The simulation results indicate that the proposed controllers have good performance for helicopter vertical flight in the presence of uncertainties and disturbances.


Sign in / Sign up

Export Citation Format

Share Document